single-particle imaging
Dotaz
Zobrazit nápovědu
Chromosome architecture needs to be investigated in relation with the chemical function of DNA. The kinetics of gene expression, DNA replication, and repair are driven by the mechanisms by which a functional nuclear protein finds its substrate in the nucleus. Single-particle tracking (SPT) is a method to quantify fluorescent molecules dynamics from the tracks of the single molecules recorded by high-resolution microscopes. SPT offers direct observation of the movement and single-molecule resolution. Usually SPT is performed on membranes because of higher contrast. Here, we introduce a novel method to record the trajectories of weakly fluorescent molecules in the nucleus of living cells. I-SPT uses some specific detection and analysis tools to enable the computation of reliable statistics on nuclear particle movement.
We present a computational case study of X-ray single-particle imaging of hydrated proteins on an example of 2-Nitrogenase-Iron protein covered with water layers of various thickness, using a start-to-end simulation platform and experimental parameters of the SPB/SFX instrument at the European X-ray Free-Electron Laser facility. The simulations identify an optimal thickness of the water layer at which the effective resolution for imaging the hydrated sample becomes significantly higher than for the non-hydrated sample. This effect is lost when the water layer becomes too thick. Even though the detailed results presented pertain to the specific sample studied, the trends which we identify should also hold in a general case. We expect these findings will guide future single-particle imaging experiments using hydrated proteins.
- MeSH
- difrakce rentgenového záření přístrojové vybavení metody MeSH
- elektrony MeSH
- fotony MeSH
- lasery * MeSH
- molekulární zobrazování metody MeSH
- oxidoreduktasy chemie účinky záření MeSH
- rentgenové záření škodlivé účinky MeSH
- simulace molekulární dynamiky * MeSH
- voda chemie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Cryo-electron microscopy has established as a mature structural biology technique to elucidate the three-dimensional structure of biological macromolecules. The Coulomb potential of the sample is imaged by an electron beam, and fast semi-conductor detectors produce movies of the sample under study. These movies have to be further processed by a whole pipeline of image-processing algorithms that produce the final structure of the macromolecule. In this chapter, we illustrate this whole processing pipeline putting in value the strength of "meta algorithms," which are the combination of several algorithms, each one with different mathematical rationale, in order to distinguish correctly from incorrectly estimated parameters. We show how this strategy leads to superior performance of the whole pipeline as well as more confident assessments about the reconstructed structures. The "meta algorithms" strategy is common to many fields and, in particular, it has provided excellent results in bioinformatics. We illustrate this combination using the workflow engine, Scipion.
- MeSH
- algoritmy * MeSH
- elektronová kryomikroskopie metody MeSH
- makromolekulární látky ultrastruktura MeSH
- molekulární biologie metody MeSH
- počítačové zpracování obrazu metody MeSH
- průběh práce MeSH
- výpočetní biologie MeSH
- zobrazení jednotlivé molekuly metody MeSH
- zobrazování trojrozměrné metody MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
We report a powerful method for capturing the time-resolved concentration profiles, liquid swelling and surface phenomena during the absorption of methane (CH4) in still liquid ethanol (C2D6O) and n-decane (n-C10D22) and at high spatial resolution (pixel size 21.07 μm) using neutron imaging. Absorption of supercritical methane was followed at two temperatures and two pressures of methane, namely 7.0, 37.8 °C and 80, 120 bar. Fick's second law, which was used in the liquid-fixed coordinates, enabled for an adequate parameterization of the observed concentration profiles and liquid levels using simple analytical expressions. For both studied liquids, anomalously slow diffusion was observed in the initial stage of the absorption experiment. This was ascribed to the slow formation of the surface excess on the interface, time constant ranged 130-275 s. The axial symmetry of the cell allowed for the tomographic reconstructions of the profiles of the menisci. Based on these profiles, contact angle and surface tension were evaluated using the Young-Laplace equation. Overall, neutron imaging made it possible to capture time- and space-resolved information from which the methane concentration, liquid level and meniscus shape under high-pressure conditions inside a cylindrical titanium vessel were quantitatively derived. Multiple characteristics of ethanol, a methane hydrate inhibitor, and n-decane, a model constituent of crude oil, were thus measured for the first time under industrially relevant conditions in a one-pot experiment.
... v Foreword vii Acknowledgements viii -- Section I: Basic Concepts 1 -- 1 Introduction to Medical Imaging ... ... Radiation 18 -- 2.2 Structure of the Atom 24 -- 3 Interaction of Radiation with Matter 33 -- 3.1 Particle ... ... Detective Quantum Efficiency 94 -- 4.12 Receiver Operating Characteristic Curves 96 -- 5 Medical Imaging ... ... Scintillation Camera 674 -- 18.1 Planar Nuclear Imaging: The Anger Scintillation Camera 675 -- 18.2 ... ... Computers in Nuclear Imaging 698 -- 19 Nuclear Imaging—Emission Tomography 705 -- 19.1 Focal Plane Tomography ...
Third edition xii, 1030 stran : ilustrace.
Background: Super-resolution single molecule localization microscopy (SMLM) is a method for achieving resolution beyond the classical limit in optical microscopes (approx. 200 nm laterally). Yellow fluorescent protein (YFP) has been used for super-resolution single molecule localization microscopy, but less frequently than other fluorescent probes. Working with YFP in SMLM is a challenge because a lower number of photons are emitted per molecule compared with organic dyes, which are more commonly used. Publically available experimental data can facilitate development of new data analysis algorithms. Findings: Four complete, freely available single molecule super-resolution microscopy datasets on YFP-tagged growth factor receptors expressed in a human cell line are presented, including both raw and analyzed data. We report methods for sample preparation, for data acquisition, and for data analysis, as well as examples of the acquired images. We also analyzed the SMLM datasets using a different method: super-resolution optical fluctuation imaging (SOFI). The 2 modes of analysis offer complementary information about the sample. A fifth single molecule super-resolution microscopy dataset acquired with the dye Alexa 532 is included for comparison purposes. Conclusions: This dataset has potential for extensive reuse. Complete raw data from SMLM experiments have typically not been published. The YFP data exhibit low signal-to-noise ratios, making data analysis a challenge. These datasets will be useful to investigators developing their own algorithms for SMLM, SOFI, and related methods. The data will also be useful for researchers investigating growth factor receptors such as ErbB3.
- MeSH
- algoritmy MeSH
- bakteriální proteiny chemie MeSH
- fluorescenční barviva chemie MeSH
- lidé MeSH
- luminescentní proteiny chemie MeSH
- receptory růstových faktorů chemie izolace a purifikace MeSH
- zobrazení jednotlivé molekuly metody MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Opioid receptors (ORs) have been observed as homo- and heterodimers, but it is unclear if the dimers are stable under physiological conditions, and whether monomers or dimers comprise the predominant fraction in a cell. Here, we use three live-cell imaging approaches to assess dimerization of ORs at expression levels that are 10-100 × smaller than in classical biochemical assays. At membrane densities around 25/µm2, a split-GFP assay reveals that κOR dimerizes, while µOR and δOR stay monomeric. At receptor densities < 5/µm2, single-molecule imaging showed no κOR dimers, supporting the concept that dimer formation depends on receptor membrane density. To directly observe the transition from monomers to dimers, we used a single-molecule assay to assess membrane protein interactions at densities up to 100 × higher than conventional single-molecule imaging. We observe that κOR is monomeric at densities < 10/µm2 and forms dimers at densities that are considered physiological. In contrast, µOR and δOR stay monomeric even at the highest densities covered by our approach. The observation of long-lasting co-localization of red and green κOR spots suggests that it is a specific effect based on OR dimerization and not an artefact of coincidental encounters.
- MeSH
- analýza jednotlivých buněk metody MeSH
- buněčná membrána metabolismus MeSH
- konformace proteinů MeSH
- krysa rodu rattus MeSH
- multimerizace proteinu MeSH
- myši MeSH
- receptory opiátové delta chemie metabolismus MeSH
- receptory opiátové mu chemie metabolismus MeSH
- zobrazení jednotlivé molekuly metody MeSH
- zvířata MeSH
- Check Tag
- krysa rodu rattus MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Classical models of gene expression were built using genetics and biochemistry. Although these approaches are powerful, they have very limited consideration of the spatial and temporal organization of gene expression. Although the spatial organization and dynamics of RNA polymerase II (RNAPII) transcription machinery have fundamental functional consequences for gene expression, its detailed studies have been abrogated by the limits of classical light microscopy for a long time. The advent of super-resolution microscopy (SRM) techniques allowed for the visualization of the RNAPII transcription machinery with nanometer resolution and millisecond precision. In this review, we summarize the recent methodological advances in SRM, focus on its application for studies of the nanoscale organization in space and time of RNAPII transcription, and discuss its consequences for the mechanistic understanding of gene expression.
- MeSH
- fluorescenční mikroskopie * metody MeSH
- genetická transkripce * MeSH
- lidé MeSH
- regulace genové exprese * MeSH
- RNA-polymerasa II metabolismus MeSH
- transkripční faktory metabolismus MeSH
- vazba proteinů MeSH
- zobrazení jednotlivé molekuly metody MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
DNA double stranded breaks (DSBs) are the most serious type of lesions introduced into chromatin by ionizing radiation. During DSB repair, cells recruit different proteins to the damaged sites in a manner dependent on local chromatin structure, DSB location in the nucleus, and the repair pathway entered. 53BP1 is one of the important players participating in repair pathway decision of the cell. Although many molecular biology details have been investigated, the architecture of 53BP1 repair foci and its development during the post-irradiation time, especially the period of protein recruitment, remains to be elucidated. Super-resolution light microscopy is a powerful new tool to approach such studies in 3D-conserved cell nuclei. Recently, we demonstrated the applicability of single molecule localization microscopy (SMLM) as one of these highly resolving methods for analyses of dynamic repair protein distribution and repair focus internal nano-architecture in intact cell nuclei. In the present study, we focused our investigation on 53BP1 foci in differently radio-resistant cell types, moderately radio-resistant neonatal human dermal fibroblasts (NHDF) and highly radio-resistant U87 glioblastoma cells, exposed to high-LET 15N-ion radiation. At given time points up to 24 h post irradiation with doses of 1.3 Gy and 4.0 Gy, the coordinates and spatial distribution of fluorescently tagged 53BP1 molecules was quantitatively evaluated at the resolution of 10⁻20 nm. Clusters of these tags were determined as sub-units of repair foci according to SMLM parameters. The formation and relaxation of such clusters was studied. The higher dose generated sufficient numbers of DNA breaks to compare the post-irradiation dynamics of 53BP1 during DSB processing for the cell types studied. A perpendicular (90°) irradiation scheme was used with the 4.0 Gy dose to achieve better separation of a relatively high number of particle tracks typically crossing each nucleus. For analyses along ion-tracks, the dose was reduced to 1.3 Gy and applied in combination with a sharp angle irradiation (10° relative to the cell plane). The results reveal a higher ratio of 53BP1 proteins recruited into SMLM defined clusters in fibroblasts as compared to U87 cells. Moreover, the speed of foci and thus cluster formation and relaxation also differed for the cell types. In both NHDF and U87 cells, a certain number of the detected and functionally relevant clusters remained persistent even 24 h post irradiation; however, the number of these clusters again varied for the cell types. Altogether, our findings indicate that repair cluster formation as determined by SMLM and the relaxation (i.e., the remaining 53BP1 tags no longer fulfill the cluster definition) is cell type dependent and may be functionally explained and correlated to cell specific radio-sensitivity. The present study demonstrates that SMLM is a highly appropriate method for investigations of spatiotemporal protein organization in cell nuclei and how it influences the cell decision for a particular repair pathway at a given DSB site.