One of the challenges in clinical translation of cell-replacement therapies is the definition of optimal cell generation and storage/recovery protocols which would permit a rapid preparation of cell-treatment products for patient administration. Besides, the availability of injection devices that are simple to use is critical for potential future dissemination of any spinally targeted cell-replacement therapy into general medical practice. Here, we compared the engraftment properties of established human-induced pluripotent stem cells (hiPSCs)-derived neural precursor cell (NPCs) line once cells were harvested fresh from the cell culture or previously frozen and then grafted into striata or spinal cord of the immunodeficient rat. A newly developed human spinal injection device equipped with a spinal cord pulsation-cancelation magnetic needle was also tested for its safety in an adult immunosuppressed pig. Previously frozen NPCs showed similar post-grafting survival and differentiation profile as was seen for freshly harvested cells. Testing of human injection device showed acceptable safety with no detectable surgical procedure or spinal NPCs injection-related side effects.
- MeSH
- buněčná diferenciace fyziologie MeSH
- dospělí MeSH
- genetické vektory genetika MeSH
- indukované pluripotentní kmenové buňky * fyziologie transplantace MeSH
- krysa rodu rattus MeSH
- lidé MeSH
- mícha MeSH
- mozek MeSH
- nervové kmenové buňky * fyziologie transplantace MeSH
- odběr biologického vzorku metody MeSH
- odběr tkání a orgánů metody MeSH
- prasata MeSH
- přeprogramování buněk * genetika fyziologie MeSH
- přežívání štěpu fyziologie MeSH
- spinální injekce * škodlivé účinky přístrojové vybavení metody MeSH
- transplantace kmenových buněk * škodlivé účinky přístrojové vybavení metody MeSH
- virus Sendai MeSH
- výsledek terapie MeSH
- zvířata MeSH
- Check Tag
- dospělí MeSH
- krysa rodu rattus MeSH
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
The critical requirements in developing clinical-grade human-induced pluripotent stem cells-derived neural precursors (hiPSCs-NPCs) are defined by expandability, genetic stability, predictable in vivo post-grafting differentiation, and acceptable safety profile. Here, we report on the use of manual-selection protocol for generating expandable and stable human NPCs from induced pluripotent stem cells. The hiPSCs were generated by the reprogramming of peripheral blood mononuclear cells with Sendai-virus (SeV) vector encoding Yamanaka factors. After induction of neural rosettes, morphologically defined NPC colonies were manually harvested, re-plated, and expanded for up to 20 passages. Established NPCs showed normal karyotype, expression of typical NPCs markers at the proliferative stage, and ability to generate functional, calcium oscillating GABAergic or glutamatergic neurons after in vitro differentiation. Grafted NPCs into the striatum or spinal cord of immunodeficient rats showed progressive maturation and expression of early and late human-specific neuronal and glial markers at 2 or 6 months post-grafting. No tumor formation was seen in NPCs-grafted brain or spinal cord samples. These data demonstrate the effective use of in vitro manual-selection protocol to generate safe and expandable NPCs from hiPSCs cells. This protocol has the potential to be used to generate GMP (Good Manufacturing Practice)-grade NPCs from hiPSCs for future clinical use.
- MeSH
- buněčná diferenciace MeSH
- indukované pluripotentní kmenové buňky * MeSH
- krysa rodu rattus MeSH
- leukocyty mononukleární MeSH
- lidé MeSH
- nervové kmenové buňky * MeSH
- neurony metabolismus MeSH
- virus Sendai genetika MeSH
- zvířata MeSH
- Check Tag
- krysa rodu rattus MeSH
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Second-order spinal cord excitatory neurons play a key role in spinal processing and transmission of pain signals to the brain. Exogenously induced change in developmentally imprinted excitatory neurotransmitter phenotypes of these neurons to inhibitory has not yet been achieved. Here, we use a subpial dorsal horn-targeted delivery of AAV (adeno-associated virus) vector(s) encoding GABA (gamma-aminobutyric acid) synthesizing-releasing inhibitory machinery in mice with neuropathic pain. Treated animals showed a progressive and complete reversal of neuropathic pain (tactile and brush-evoked pain behavior) that persisted for a minimum of 2.5 months post-treatment. The mechanism of this treatment effect results from the switch of excitatory to preferential inhibitory neurotransmitter phenotype in dorsal horn nociceptive neurons and a resulting increase in inhibitory activity in regional spinal circuitry after peripheral nociceptive stimulation. No detectable side effects (e.g., sedation, motor weakness, loss of normal sensation) were seen between 2 and 13 months post-treatment in naive adult mice, pigs, and non-human primates. The use of this treatment approach may represent a potent and safe treatment modality in patients suffering from spinal cord or peripheral nerve injury-induced neuropathic pain.
- MeSH
- buňky zadních rohů míšních MeSH
- mícha MeSH
- myši MeSH
- neuralgie * etiologie terapie MeSH
- nociceptory * MeSH
- prasata MeSH
- technika přenosu genů MeSH
- zadní rohy míšní MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
Gene silencing with virally delivered shRNA represents a promising approach for treatment of inherited neurodegenerative disorders. In the present study we develop a subpial technique, which we show in adult animals successfully delivers adeno-associated virus (AAV) throughout the cervical, thoracic and lumbar spinal cord, as well as brain motor centers. One-time injection at cervical and lumbar levels just before disease onset in mice expressing a familial amyotrophic lateral sclerosis (ALS)-causing mutant SOD1 produces long-term suppression of motoneuron disease, including near-complete preservation of spinal α-motoneurons and muscle innervation. Treatment after disease onset potently blocks progression of disease and further α-motoneuron degeneration. A single subpial AAV9 injection in adult pigs or non-human primates using a newly designed device produces homogeneous delivery throughout the cervical spinal cord white and gray matter and brain motor centers. Thus, spinal subpial delivery in adult animals is highly effective for AAV-mediated gene delivery throughout the spinal cord and supraspinal motor centers.
- MeSH
- amyotrofická laterální skleróza genetika patofyziologie terapie MeSH
- atrofie MeSH
- degenerace nervu genetika patofyziologie terapie MeSH
- Dependovirus metabolismus MeSH
- interneurony patologie MeSH
- lidé MeSH
- malá interferující RNA aplikace a dávkování MeSH
- messenger RNA genetika metabolismus MeSH
- mícha diagnostické zobrazování patologie patofyziologie MeSH
- motorické evokované potenciály MeSH
- motorické neurony patologie MeSH
- myši inbrední C57BL MeSH
- myši transgenní MeSH
- pia mater patologie patofyziologie MeSH
- prasata MeSH
- primáti MeSH
- progrese nemoci MeSH
- regulace genové exprese MeSH
- sbalování proteinů MeSH
- superoxiddismutasa 1 genetika metabolismus MeSH
- technika přenosu genů * MeSH
- umlčování genů * MeSH
- vývoj svalů MeSH
- zánět patologie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
Neural precursor cells (NSCs) hold great potential to treat a variety of neurodegenerative diseases and injuries to the spinal cord. However, current delivery techniques require an invasive approach in which an injection needle is advanced into the spinal parenchyma to deliver cells of interest. As such, this approach is associated with an inherent risk of spinal injury, as well as a limited delivery of cells into multiple spinal segments. Here, we characterize the use of a novel cell delivery technique that employs single bolus cell injections into the spinal subpial space. In immunodeficient rats, two subpial injections of human NSCs were performed in the cervical and lumbar spinal cord, respectively. The survival, distribution, and phenotype of transplanted cells were assessed 6-8 months after injection. Immunofluorescence staining and mRNA sequencing analysis demonstrated a near-complete occupation of the spinal cord by injected cells, in which transplanted human NSCs (hNSCs) preferentially acquired glial phenotypes, expressing oligodendrocyte (Olig2, APC) or astrocyte (GFAP) markers. In the outermost layer of the spinal cord, injected hNSCs differentiated into glia limitans-forming astrocytes and expressed human-specific superoxide dismutase and laminin. All animals showed normal neurological function for the duration of the analysis. These data show that the subpial cell delivery technique is highly effective in populating the entire spinal cord with injected NSCs, and has a potential for clinical use in cell replacement therapies for the treatment of ALS, multiple sclerosis, or spinal cord injury.
BACKGROUND: A well-characterized method has not yet been established to reproducibly, efficiently, and safely isolate large numbers of clinical-grade multipotent human neural stem cells (hNSCs) from embryonic stem cells (hESCs). Consequently, the transplantation of neurogenic/gliogenic precursors into the CNS for the purpose of cell replacement or neuroprotection in humans with injury or disease has not achieved widespread testing and implementation. METHODS: Here, we establish an approach for the in vitro isolation of a highly expandable population of hNSCs using the manual selection of neural precursors based on their colony morphology (CoMo-NSC). The purity and NSC properties of established and extensively expanded CoMo-NSC were validated by expression of NSC markers (flow cytometry, mRNA sequencing), lack of pluripotent markers and by their tumorigenic/differentiation profile after in vivo spinal grafting in three different animal models, including (i) immunodeficient rats, (ii) immunosuppressed ALS rats (SOD1G93A), or (iii) spinally injured immunosuppressed minipigs. RESULTS: In vitro analysis of established CoMo-NSCs showed a consistent expression of NSC markers (Sox1, Sox2, Nestin, CD24) with lack of pluripotent markers (Nanog) and stable karyotype for more than 15 passages. Gene profiling and histology revealed that spinally grafted CoMo-NSCs differentiate into neurons, astrocytes, and oligodendrocytes over a 2-6-month period in vivo without forming neoplastic derivatives or abnormal structures. Moreover, transplanted CoMo-NSCs formed neurons with synaptic contacts and glia in a variety of host environments including immunodeficient rats, immunosuppressed ALS rats (SOD1G93A), or spinally injured minipigs, indicating these cells have favorable safety and differentiation characteristics. CONCLUSIONS: These data demonstrate that manually selected CoMo-NSCs represent a safe and expandable NSC population which can effectively be used in prospective human clinical cell replacement trials for the treatment of a variety of neurodegenerative disorders, including ALS, stroke, spinal traumatic, or spinal ischemic injury.
The use of autologous (or syngeneic) cells derived from induced pluripotent stem cells (iPSCs) holds great promise for future clinical use in a wide range of diseases and injuries. It is expected that cell replacement therapies using autologous cells would forego the need for immunosuppression, otherwise required in allogeneic transplantations. However, recent studies have shown the unexpected immune rejection of undifferentiated autologous mouse iPSCs after transplantation. Whether similar immunogenic properties are maintained in iPSC-derived lineage-committed cells (such as neural precursors) is relatively unknown. We demonstrate that syngeneic porcine iPSC-derived neural precursor cell (NPC) transplantation to the spinal cord in the absence of immunosuppression is associated with long-term survival and neuronal and glial differentiation. No tumor formation was noted. Similar cell engraftment and differentiation were shown in spinally injured transiently immunosuppressed swine leukocyte antigen (SLA)-mismatched allogeneic pigs. These data demonstrate that iPSC-NPCs can be grafted into syngeneic recipients in the absence of immunosuppression and that temporary immunosuppression is sufficient to induce long-term immune tolerance after NPC engraftment into spinally injured allogeneic recipients. Collectively, our results show that iPSC-NPCs represent an alternative source of transplantable NPCs for the treatment of a variety of disorders affecting the spinal cord, including trauma, ischemia, or amyotrophic lateral sclerosis.
- MeSH
- analýza přežití MeSH
- buněčná diferenciace MeSH
- chronická nemoc MeSH
- fibroblasty cytologie MeSH
- homologní transplantace MeSH
- humorální imunita MeSH
- imunologická tolerance MeSH
- imunosupresivní léčba MeSH
- indukované pluripotentní kmenové buňky cytologie MeSH
- krysa rodu rattus MeSH
- kůže cytologie MeSH
- mícha transplantace MeSH
- miniaturní prasata MeSH
- neostriatum patologie MeSH
- nervové kmenové buňky cytologie transplantace MeSH
- neurony cytologie MeSH
- poranění míchy patologie terapie MeSH
- prasata MeSH
- přeprogramování buněk MeSH
- regulace genové exprese MeSH
- stárnutí MeSH
- transplantace izogenní MeSH
- zvířata MeSH
- Check Tag
- krysa rodu rattus MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
The successful development of a subpial adeno-associated virus 9 (AAV9) vector delivery technique in adult rats and pigs has been reported on previously. Using subpially-placed polyethylene catheters (PE-10 or PE-5) for AAV9 delivery, potent transgene expression through the spinal parenchyma (white and gray matter) in subpially-injected spinal segments has been demonstrated. Because of the wide range of transgenic mouse models of neurodegenerative diseases, there is a strong desire for the development of a potent central nervous system (CNS)-targeted vector delivery technique in adult mice. Accordingly, the present study describes the development of a spinal subpial vector delivery device and technique to permit safe and effective spinal AAV9 delivery in adult C57BL/6J mice. In spinally immobilized and anesthetized mice, the pia mater (cervical 1 and lumbar 1-2 spinal segmental level) was incised with a sharp 34 G needle using an XYZ manipulator. A second XYZ manipulator was then used to advance a blunt 36G needle into the lumbar and/or cervical subpial space. The AAV9 vector (3-5 µL; 1.2 x 1013genome copies (gc)) encoding green fluorescent protein (GFP) was then injected subpially. After injections, neurological function (motor and sensory) was assessed periodically, and animals were perfusion-fixed 14 days after AAV9 delivery with 4% paraformaldehyde. Analysis of horizontal or transverse spinal cord sections showed transgene expression throughout the entire spinal cord, in both gray and white matter. In addition, intense retrogradely-mediated GFP expression was seen in the descending motor axons and neurons in the motor cortex, nucleus ruber, and formatio reticularis. No neurological dysfunction was noted in any animals. These data show that the subpial vector delivery technique can successfully be used in adult mice, without causing procedure-related spinal cord injury, and is associated with highly potent transgene expression throughout the spinal neuraxis.
- MeSH
- audiovizuální záznam MeSH
- Dependovirus genetika MeSH
- fluorescenční mikroskopie MeSH
- genetické vektory genetika metabolismus MeSH
- mícha metabolismus MeSH
- mozek metabolismus MeSH
- myši inbrední C57BL MeSH
- myši MeSH
- zelené fluorescenční proteiny genetika MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- myši MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- audiovizuální média MeSH
- časopisecké články MeSH
UNLABELLED: Pluripotent stem cell-derived committed neural precursors are an important source of cells to treat neurodegenerative diseases including spinal cord injury. There remains an urgency to identify markers for monitoring of neural progenitor specificity, estimation of neural fate and follow-up correlation with therapeutic effect in preclinical studies using animal disease models. Cell surface capture technology was used to uncover the cell surface exposed N-glycoproteome of neural precursor cells upon neuronal differentiation as well as post-mitotic mature hNT neurons. The data presented depict an extensive study of surfaceome during neuronal differentiation, confirming glycosylation at a particular predicted site of many of the identified proteins. Quantitative changes detected in cell surface protein levels reveal a set of proteins that highlight the complexity of the neuronal differentiation process. Several of these proteins including the cell adhesion molecules ICAM1, CHL1, and astrotactin1 as well as LAMP1 were validated by SRM. Combination of immunofluorescence staining of ICAM1 and flow cytometry indicated a possible direction for future scrutiny of such proteins as targets for enrichment of the neuronal subpopulation from mixed cultures after differentiation of neural precursor cells. These surface proteins hold an important key for development of safe strategies in cell-replacement therapies of neuronal disorders. BIOLOGICAL SIGNIFICANCE: Neural stem and/or precursor cells have a great potential for cell-replacement therapies of neuronal diseases. Availability of well characterised and expandable neural cell lineage specific populations is critical for addressing such a challenge. In our study we identified and relatively quantified several hundred surface N-glycoproteins in the course of neuronal differentiation. We further confirmed the abundant changes for several cell adhesion proteins by SRM and outlined a strategy for utilisation of such N-glycoproteins in antibody based cell sorting. The comprehensive dataset presented here demonstrates the molecular background of neuronal differentiation highly useful for development of new plasma membrane markers to identify and select neuronal subpopulation from mixed neural cell cultures.
- MeSH
- buněčná diferenciace fyziologie MeSH
- buněčné linie MeSH
- kultivované buňky MeSH
- lidé MeSH
- membránové glykoproteiny metabolismus MeSH
- nervové kmenové buňky cytologie metabolismus MeSH
- proteiny nervové tkáně metabolismus MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Effective in vivo use of adeno-associated virus (AAV)-based vectors to achieve gene-specific silencing or upregulation in the central nervous system has been limited by the inability to provide more than limited deep parenchymal expression in adult animals using delivery routes with the most clinical relevance (intravenous or intrathecal). Here, we demonstrate that the spinal pia membrane represents the primary barrier limiting effective AAV9 penetration into the spinal parenchyma after intrathecal AAV9 delivery. We develop a novel subpial AAV9 delivery technique and AAV9-dextran formulation. We use these in adult rats and pigs to show (i) potent spinal parenchymal transgene expression in white and gray matter including neurons, glial and endothelial cells after single bolus subpial AAV9 delivery; (ii) delivery to almost all apparent descending motor axons throughout the length of the spinal cord after cervical or thoracic subpial AAV9 injection; (iii) potent retrograde transgene expression in brain motor centers (motor cortex and brain stem); and (iv) the relative safety of this approach by defining normal neurological function for up to 6 months after AAV9 delivery. Thus, subpial delivery of AAV9 enables gene-based therapies with a wide range of potential experimental and clinical utilizations in adult animals and human patients.
- Publikační typ
- časopisecké články MeSH