Phthalic acid isomers are the monomers of phthalate molecules, also known as phthalic acid esters, widely employed in the plastics industry. This study aims to investigate the biodegradation of phthalic acid (PA) and terephthalic acid (TPA) by five industry-borne Comamonas testosteroni strains: 3APTOL, 3ABBK, 2B, 3A1, and C8. To assess the ability of C. testosteroni strains to biodegrade phthalic acid isomers in fermentation media, an analytical method was employed, consisting of high-performance liquid chromatography (HPLC) analyses. Subsequently, molecular screening of the genomic and plasmid DNA was conducted to identify the degradative genes responsible for the breakdown of these chemicals. The genes of interest, including ophA2, tphA2, tphA3, pmdA, and pmdB, were screened by real-time PCR. The five C. testosteroni strains effectively degraded 100% of 100 mg/L PA (p = 0.033) and TPA (p = 0.0114). Molecular analyses indicated that all C. testosteroni strains contained the pertinent genes at different levels within their genomes and plasmids, as reflected in the threshold cycle (Ct) values. Additionally, DNA temperature of melting (Tm) analyses uncovered minor differences between groups of genes in genomic and plasmid DNA. C. testosteroni strains could be excellent candidates for the removal of phthalic acid isomers from environmental systems.
The species of Comamonas testosteroni is the most common human pathogen of the genus, which can be associated with acute appendicitis, infections of the bloodstream, the peritoneal cavity, cerebrospinal fluid, inflammatory bowel disease, and in general, bacteremia. According to the literature, Comamonas testosteroni has destructive activity to a wide range of toxic chemical compounds, including chlorobenzenes. The specified strains were isolated from the soil of the organochlorine waste landfill, where hexachlorobenzene (HCB) was predominant. These strains were expected to be capable of degrading HCB. Microbiological (bacterial enrichment and cultivating, bacterial biomass obtaining), molecular biology, biochemical (enzymatic activities, malondialdehyde measuring, peroxidation lipid products measuring), and statistical methods were carried out in this research. The reaction of both strains (UCM B-400 and UCM B-401) to the hexachlorobenzene presence differed in the content of diene and triene conjugates and malondialdehyde, as well as different catalase and peroxidase activity levels. In terms of primary peroxidation products, diene conjugates were lower, except conditions with 20 mg/L HCB, where these were higher up to two times, than the pure control. Malondialdehyde in strain B-400 cells decreased up to five times, in B-401, but increased up to two times, compared to the pure control. Schiff bases in strain B-400 cells were 2-3 times lower than the pure control. However, in B-401 cells Schiff bases under higher HCB dose were in the same level with the pure control. Catalase activity was 1.5 times higher in all experimental variants, compared to the pure control (in the strain B-401 cells), but in the B-400 strain, cells were 2 times lower, compared to the pure control. The response of the two strains to hexachlorobenzene was similar only in peroxidase activity terms, which was slightly higher compared to the pure control. The physiological response of Comamonas testosteroni strains to hexachlorobenzene has a typical strain reaction. The physiological response level of these strains to hexachlorobenzene confirms its tolerance, and indirectly, the ability to destroy the specified toxic compound.
- MeSH
- antioxidancia MeSH
- chlorbenzeny MeSH
- Comamonas testosteroni * MeSH
- hexachlorbenzen * MeSH
- katalasa MeSH
- lidé MeSH
- lipidy MeSH
- malondialdehyd MeSH
- peroxidace lipidů MeSH
- půda MeSH
- Schiffovy báze MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
An environmental isolate Comamonas testosteroni RF2 has been previously described to cometabolize trichloroethene (TCE), 1,2-cis-dichloroethene (cDCE), 1,2-trans-dichloroethene (tDCE), and 1,1-dichloroethene (1,1DCE) when grown on phenol and lactate sodium. In this study, three vinyl chloride (VC) degrading strains, Mycobacterium aurum L1, Pseudomonas putida PS, and Rhodococcus ruber Sm-1 were used to form consortia with the strain RF2 in terms to achieve the removal of VC along with above-mentioned chloroethenes. Degradation assays were performed for a binary mixture of cDCE and VC as well as for a mixture of TCE, all DCEs and VC. The consortium composed of C. testosteroni RF2 and M. aurum L1 showed to be the most efficient towards the removal of cDCE (6.01 mg L-1) in the binary mixture with VC (10 mg L-1) and was capable of efficiently removing chloroethenes in the mixture sample at the initial concentrations of 116 μg L-1 for TCE, 662 μg L-1 for cDCE, 42 μg L-1 for tDCE, 16 μg L-1 for 1,1DCE, and 7 mg L-1 for VC with a removal efficiency of nearly 100% for all of the compounds. Although complete removal of VC took a significantly longer time than the removal of other chloroethenes, the consortium composed of C. testosteroni RF2 and M. aurum L1 displayed strong bioremediation potential for aquifers with downstream contamination characterized by the presence of less chlorinated ethenes.
An environmental isolate Comamonas testosteroni strain RF2, which has been found to cometabolize trichloroethene (TCE) in the presence of phenol and sodium lactate as growth substrates, was tested to investigate its capacity for degrading 1,2-cis-dichloroethene (cDCE), 1,2-trans-dichlorothene (tDCE), and 1,1-dichloroethene (1,1DCE). Degradation assays were performed for single DCEs, as well as for a mixture of DCEs with TCE, which resembled contaminated plume in groundwater. RF2 was capable of efficiently removing all three dichloroethenes (DCEs) at the initial aqueous concentrations of 6.01 mg L-1for cDCE, 3.80 mg L-1for tDCE and 0.65 mg L-1for 1,1DCE, with a removal efficiency of 100% for cDCE, 65.8% for tDCE, and 46.8% for 1,1DCE. Furthermore, complete removal of TCE, cDCE and 1,1DCE (122.5 μg L-1, 84.3 μg L-1and 51.4 μg L-1, respectively) was observed in a mixture sample that also contained 72.33 μg L-1of tDCE, which was removed to the amount of 72.3%. Moreover, degradation of cDCE (6.01 mg L-1) led to a 93.8% release of inorganic chloride, and 2,2-dichloroacetaldehyde was determined as the first intermediate of cDCE transformation. The findings of this study suggest that the strain RF2 exhibits the potential to remediate groundwater contaminated with less chlorinated ethenes.
OBJECTIVE: Comamonas testosteroni Pb50 is a microorganism that possesses high tolerance for phenol and shows strong phenol degrading activity. This bacterial strain is capable of utilizing phenol as the sole carbon and energy source. Although examples are known in which the C. testosteroni utilizes phenol for growth or metabolism, much less information are known on the nature of the phenol-oxidizing enzymes in this microorganism. Therefore, the occurrence and cellular location of phenol hydroxylase (EC 1.14.13.7), the enzyme participating in the first step of phenol degradation, catalyzing its hydroxylation to catechol in a bacterial Comamonas testosteroni Pb50 strain grown in the presence of phenol as a sole carbon and energy source are the aims of this study. METHODS: Combination of fractionation with polyethylene glycol 6000 and gel permeation chromatography on columns of Sepharose 4B and Sephacryl S-300 was used for isolation of phenol hydroxylase detectable in the medium in which C. testosteroni was cultivated. The sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and gel chromatography on Sephacryl S-300 were used to evaluate the molecular mass of the enzyme. The enzyme activity was followed by HPLC (phenol consumption and/or catechol formation). RESULTS: Whereas low activity of phenol hydroxylase was detected in cytosol isolated from C. testosteroni, more than 16-fold higher activity of this enzyme was found in the medium in which C. testosteroni was cultivated. The presence of phenol hydroxylase extracellular activity suggests that this microorganism may secrete the enzyme into the extracellular medium. Using the procedure consisting of fractionation with polyethylene glycol 6000 and gel permeation chromatography on columns of Sepharose 4B and Sephacryl S-300, the enzyme was isolated from the medium to homogeneity. The formation of catechol mediated by purified phenol hydroxylase is strictly dependent on the presence of NADPH, which indicates that this enzyme is the NADPH-dependent phenol hydroxylase. The enzyme is a homotetramer having a molecular mass of 240 000, consisting of four subunits having a molecular mass of 60 000. The optimum pH of the enzyme for the phenol oxidation is pH 7.6. CONCLUSION: The results are the first report showing isolation and partial characterization of extracellular NADPH-dependent phenol hydroxylase of a bacterial C. testosteroni Pb50 strain capable of oxidizing phenol to catechol. The data demonstrate the progress in resolving the enzymes responsible for the first step of phenol degradation by bacteria.
- MeSH
- časové faktory MeSH
- Comamonas testosteroni enzymologie genetika MeSH
- elektroforéza v polyakrylamidovém gelu MeSH
- extracelulární prostor enzymologie genetika MeSH
- fenol metabolismus MeSH
- katalýza MeSH
- katecholy metabolismus MeSH
- klonování DNA MeSH
- koncentrace vodíkových iontů MeSH
- NADP metabolismus MeSH
- oxidace-redukce MeSH
- oxygenasy se smíšenou funkcí genetika izolace a purifikace metabolismus MeSH
- vysokoúčinná kapalinová chromatografie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
This contribution provides data on the use of an organo-mineral complex (OMC) to remove chlorinated organic pollutants from soil. The key role in reduction of bioavailability of soil contaminants in soil is played by the organic matter, mainly by humic acids. Adsorption/ desorption experiments with pentachlorophenol (PCP) as a model chloroaromatic compound, were carried out with OMC on the basis of clay mineral (zeolite) and organic matter, both natural products with excellent sorption properties. Their sorption characteristics were studied with three types of unsterilized soil in the presence of indigenous microorganisms. Subsequently, biodegradation of PCP was studied in the same types of sterilized soils bioaugmented with bacterial isolate Comamonas testosteroni CCM 7350, with and without addition of OMC. The immobilization effect of OMC depends on the concentration of PCP and organic carbon content in soil. The activity of microorganisms and the effect of acid rains lead to gradual release of the reversibly bound PCP. OMC appeared to be a good trap for PCP with potential application in bioremediation technology. Fast and effective adsorption, and low and gradual desorption may serve as pretreatment steps of biodegradation for reducing the PCP content in soil and thus reducing its potential toxicity.