Significance: Mitochondria determine glucose-stimulated insulin secretion (GSIS) in pancreatic β-cells by elevating ATP synthesis. As the metabolic and redox hub, mitochondria provide numerous links to the plasma membrane channels, insulin granule vesicles (IGVs), cell redox, NADH, NADPH, and Ca2+ homeostasis, all affecting insulin secretion. Recent Advances: Mitochondrial redox signaling was implicated in several modes of insulin secretion (branched-chain ketoacid [BCKA]-, fatty acid [FA]-stimulated). Mitochondrial Ca2+ influx was found to enhance GSIS, reflecting cytosolic Ca2+ oscillations induced by action potential spikes (intermittent opening of voltage-dependent Ca2+ and K+ channels) or the superimposed Ca2+ release from the endoplasmic reticulum (ER). The ATPase inhibitory factor 1 (IF1) was reported to tune the glucose sensitivity range for GSIS. Mitochondrial protein kinase A was implicated in preventing the IF1-mediated inhibition of the ATP synthase. Critical Issues: It is unknown how the redox signal spreads up to the plasma membrane and what its targets are, what the differences in metabolic, redox, NADH/NADPH, and Ca2+ signaling, and homeostasis are between the first and second GSIS phase, and whether mitochondria can replace ER in the amplification of IGV exocytosis. Future Directions: Metabolomics studies performed to distinguish between the mitochondrial matrix and cytosolic metabolites will elucidate further details. Identifying the targets of cell signaling into mitochondria and of mitochondrial retrograde metabolic and redox signals to the cell will uncover further molecular mechanisms for insulin secretion stimulated by glucose, BCKAs, and FAs, and the amplification of secretion by glucagon-like peptide (GLP-1) and metabotropic receptors. They will identify the distinction between the hub β-cells and their followers in intact and diabetic states. Antioxid. Redox Signal. 36, 920-952.
- MeSH
- adenosintrifosfát metabolismus MeSH
- beta-buňky * metabolismus MeSH
- glukosa metabolismus MeSH
- inzulin metabolismus MeSH
- Langerhansovy ostrůvky * metabolismus MeSH
- mitochondrie metabolismus MeSH
- NAD metabolismus MeSH
- NADP metabolismus MeSH
- sekrece inzulinu MeSH
- sekretagoga metabolismus MeSH
- vápník metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
Sesquiterpene lactone helenalin is used as an antiphlogistic in European and Chinese folk medicine. The pharmacological activities of helenalin have been extensively investigated, yet insufficient information exists about its metabolic properties. The objectives of the present study were (1) to investigate the in vitro NADPH-dependent metabolism of helenalin (5 and 100 μM) using human and rat liver microsomes and liver cytosol, (2) to elucidate the role of human cytochrome P450 (CYP) enzymes in its oxidative metabolism, and (3) to study the inhibition of human CYPs by helenalin. Five oxidative metabolites were detected in NADPH-dependent human and rat liver microsomal incubations, while two reduced metabolites were detected only in NADPH-dependent human microsomal and cytosolic incubations. In human liver microsomes, the main oxidative metabolite was 14-hydroxyhelenalin, and in rat liver microsomes 9-hydroxyhelenalin. The overall oxidation of helenalin was several times more efficient in rat than in human liver microsomes. In humans, CYP3A4 and CYP3A5 followed by CYP2B6 were the main enzymes responsible for the hepatic metabolism of helenalin. The extrahepatic CYP2A13 oxidized helenalin most efficiently among CYP enzymes, possessing the Km value of 0.6 μM. Helenalin inhibited CYP3A4 (IC50 = 18.7 μM) and CYP3A5 (IC50 = 62.6 μM), and acted as a mechanism-based inhibitor of CYP2A13 (IC50 = 1.1 μM, KI = 6.7 μM, and kinact = 0.58 ln(%)/min). It may be concluded that the metabolism of helenalin differs between rats and humans, in the latter its oxidation is catalyzed by hepatic CYP2B6, CYP3A4, CYP3A5, and CYP3A7, and extrahepatic CYP2A13.
- MeSH
- druhová specificita MeSH
- inhibiční koncentrace 50 MeSH
- inhibitory cytochromu P450 aplikace a dávkování metabolismus farmakologie MeSH
- jaterní mikrozomy metabolismus MeSH
- krysa rodu rattus MeSH
- lidé MeSH
- NADP metabolismus MeSH
- potkani Wistar MeSH
- seskviterpeny guajanové aplikace a dávkování metabolismus farmakologie MeSH
- systém (enzymů) cytochromů P-450 účinky léků metabolismus MeSH
- zvířata MeSH
- Check Tag
- krysa rodu rattus MeSH
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Wild type mitochondrial isocitrate dehydrogenase (IDH2) was previously reported to produce oncometabolite 2-hydroxyglutarate (2HG). Besides, mitochondrial deacetylase SIRT3 has been shown to regulate the oxidative function of IDH2. However, regulation of 2HG formation by SIRT3-mediated deacetylation was not investigated yet. We aimed to study mitochondrial IDH2 function in response to acetylation and deacetylation, and focus specifically on 2HG production by IDH2. We used acetylation surrogate mutant of IDH2 K413Q and assayed enzyme kinetics of oxidative decarboxylation of isocitrate, 2HG production by the enzyme, and 2HG production in cells. The purified IDH2 K413Q exhibited lower oxidative reaction rates than IDH2 WT. 2HG production by IDH2 K413Q was largely diminished at the enzymatic and cellular level, and knockdown of SIRT3 also inhibited 2HG production by IDH2. Contrary, the expression of putative mitochondrial acetylase GCN5L likely does not target IDH2. Using mass spectroscopy, we further identified lysine residues within IDH2, which are the substrates of SIRT3. In summary, we demonstrate that 2HG levels arise from non-mutant IDH2 reductive function and decrease with increasing acetylation level. The newly identified lysine residues might apply in regulation of IDH2 function in response to metabolic perturbations occurring in cancer cells, such as glucose-free conditions.
- MeSH
- acetylace MeSH
- glutaráty metabolismus MeSH
- isocitrátdehydrogenasa genetika metabolismus MeSH
- isocitráty chemie MeSH
- lidé MeSH
- mitochondrie metabolismus MeSH
- nádorové buněčné linie MeSH
- NADP metabolismus MeSH
- oxidace-redukce MeSH
- proteiny nervové tkáně metabolismus MeSH
- sirtuin 3 metabolismus MeSH
- umlčování genů MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Objective: To determine the effect of presence of high concentrations of nicotinamide adenine dinucleotide (NADH)- and nicotinamide adenine dinucleotide phosphate (NADPH)-consuming enzymes on the accuracy of glutamate dehydrogenase (GLDH) assay for ammonia. Methods: We measured ammonia concentrations using GLDH and NADH or NADPH in blood-plasma specimens and specimens deproteinized by sulfosalicylic acid from CCl4-treated or control rats. The nonspecific oxidation of NADH and NADPH was measured in mixtures without GLDH. Results: We observed a gradual decrease (~0.5%) in absorbance in the plasma of controls after the addition of NADH but not after adding NADPH. The decrease in absorbance in plasma of CCl4-treated animals was 13.2% and 5.2% after the addition of NADH and NADPH, respectively. The decrease in absorbance was not detected in deproteinized specimens. The values of ammonia concentration were higher in the plasma specimens compared with the deproteinized ones. Conclusion: Deproteinization is necessary for accurate measurement of ammonia using GLDH assay in the blood plasma of subjects with liver injury.
- MeSH
- amoniak krev MeSH
- biochemická analýza krve metody normy MeSH
- glutamátdehydrogenasa metabolismus MeSH
- krevní proteiny izolace a purifikace MeSH
- krysa rodu rattus MeSH
- lidé MeSH
- lineární modely MeSH
- NAD metabolismus MeSH
- NADP metabolismus MeSH
- nemoci jater krev metabolismus MeSH
- oxidace-redukce MeSH
- potkani Wistar MeSH
- zvířata MeSH
- Check Tag
- krysa rodu rattus MeSH
- lidé MeSH
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Salt stress is one of the most damaging plant stressors, whereas hypoosmotic stress is not considered to be a dangerous type of stress in plants and has been less extensively studied. This study was performed to compare the metabolism of cucumber plants grown in soil with plants transferred to distilled water and to a 100 mM NaCl solution. Even though hypoosmotic stress caused by distilled water did not cause such significant changes in the relative water content, Na+/K+ ratio and Rubisco content as those caused by salt stress, it was accompanied by more pronounced changes in the specific activities of NADP-dependent enzymes. After 3 days, the specific activities of NADP-isocitrate dehydrogenase, glucose-6-phosphate dehydrogenase, NADP-malic enzyme and non-phosphorylating glyceraldehyde-3-phosphate dehydrogenase in leaves were highest under hypoosmotic stress, and lowest in plants grown in soil. In roots, salt stress caused a decrease in the specific activities of major NADP-enzymes. However, at the beginning of salt stress, NADP-galactose-1-dehydrogenase and ribose-1-dehydrogenase were involved in a plant defense response in both roots and leaves. Therefore, the enhanced demands of NADPH in stress can be replenished by a wide range of NADP-dependent enzymes.
- MeSH
- chlorid sodný aplikace a dávkování MeSH
- Cucumis sativus fyziologie MeSH
- fyziologický stres účinky léků fyziologie MeSH
- multienzymové komplexy metabolismus MeSH
- NADP metabolismus MeSH
- osmotický tlak účinky léků fyziologie MeSH
- semenáček účinky léků fyziologie MeSH
- tolerance k soli účinky léků fyziologie MeSH
- Publikační typ
- časopisecké články MeSH
The aim of this study was to investigate aldose reductase inhibitory action of setipiprant as a potential additional mechanism contributing to its anti-inflammatory action. Aldose reductase activity was determined by spectrophotometric measuring of NADPH consumption. Setipiprant was found to inhibit aldose reductase/NADPH-mediated reduction of 4-hydroxynonenal, 4-hydroxynonenal glutathione and prostaglandin H2 substrates, all relevant to the process of inflammation. Molecular modeling simulations into the aldose reductase inhibitor binding site revealed an interaction pattern of setipiprant. Considering multifactorial etiology of inflammatory pathologies, it is suggested that, in addition to the antagonizing prostaglandin D2 receptor, inhibition of aldose reductase may contribute to the reported anti-inflammatory action of setipiprant.
- MeSH
- aldehydreduktasa antagonisté a inhibitory metabolismus MeSH
- antiflogistika chemie farmakologie MeSH
- indoly chemie farmakologie MeSH
- inhibitory enzymů metabolismus farmakologie MeSH
- krysa rodu rattus MeSH
- lidé MeSH
- NADP metabolismus MeSH
- naftaleny chemie farmakologie MeSH
- potkani Wistar MeSH
- simulace molekulového dockingu metody MeSH
- vazebná místa fyziologie MeSH
- zvířata MeSH
- Check Tag
- krysa rodu rattus MeSH
- lidé MeSH
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Mammalian dihydrofolate reductases (DHFRs) catalyze the reduction of folate more efficiently than the equivalent bacterial enzymes do, despite typically having similar efficiencies for the reduction of their natural substrate, dihydrofolate. In contrast, we show here that DHFR from the hyperthermophilic bacterium Thermotoga maritima can catalyze reduction of folate to tetrahydrofolate with an efficiency similar to that of reduction of dihydrofolate under saturating conditions. Nuclear magnetic resonance and mass spectrometry experiments showed no evidence of the production of free dihydrofolate during either the EcDHFR- or TmDHFR-catalyzed reductions of folate, suggesting that both enzymes perform the two reduction steps without release of the partially reduced substrate. Our results imply that the reaction proceeds more efficiently in TmDHFR than in EcDHFR because the more open active site of TmDHFR facilitates protonation of folate. Because T. maritima lives under extreme conditions where tetrahydrofolate is particularly prone to oxidation, this ability to salvage folate may impart an advantage to the bacterium by minimizing the squandering of a valuable cofactor.
- MeSH
- bakteriální proteiny chemie genetika metabolismus MeSH
- dihydrofolátreduktasa chemie genetika metabolismus MeSH
- druhová specificita MeSH
- Escherichia coli chemie enzymologie genetika MeSH
- exprese genu MeSH
- katalytická doména MeSH
- kinetika MeSH
- koncentrace vodíkových iontů MeSH
- kyselina listová chemie metabolismus MeSH
- NADP chemie metabolismus MeSH
- oxidace-redukce MeSH
- protony * MeSH
- sbalování proteinů MeSH
- sekundární struktura proteinů MeSH
- teplota MeSH
- termodynamika MeSH
- tetrahydrofoláty chemie metabolismus MeSH
- Thermotoga maritima chemie enzymologie genetika MeSH
- Publikační typ
- časopisecké články MeSH
INTRODUCTION: Chronic granulomatous disease (CGD) is an inherited mutational defect in any of the NADPH oxidase complex, CYBB (gp91-phox), NCF1 (p47-phox), CYBA (p22-phox), NCF2 (p67-phox), or NCF4 (p40-phox) leading to inability of phagocytes to perform effective respiratory burst and thus diminished killing of bacteria and fungi. The identification of defective proteins aids in establishing a diagnosis prior to genetic analysis, which is rather labor-intensive, expensive, and time-consuming. AIM: The present study aims at assessing the NADPH proteins by performing the intracellular staining with specific monoclonal antibodies and their assessment on flow cytometry. The use of flow cytometry is less laborious and faster to perform than western blot. It also confirms the diagnosis of CGD and detects the affected components allowing proper management of patients. MATERIALS AND METHODS: Twenty-eight patients from 25 different kindred, clinically suspected as CGD were recruited in Egypt. Dihydrorhodamine test was performed to confirm the diagnosis of the patients. Intracellular staining of NADPH components using specific monoclonal antibodies was performed followed by flow cytometric analysis. RESULTS: The present study revealed that the most common defective protein in our cohort is p22-phox, found in 13 patients (46.4 % of cases) followed by p47-phox in 8 patients (28.6 %), gp91-phox in 5 patients (17.9 %), and finally p67-phox in 2 patients (7.1 %). CONCLUSION: In countries with limited resources and yet large number of CGD patients, the analysis of the defective proteins by flow cytometry is an optimum solution for confirming the diagnosis and is a step for targeted sequencing in families seeking prenatal diagnosis.
- MeSH
- biologické markery MeSH
- chronická granulomatózní nemoc diagnóza genetika imunologie metabolismus MeSH
- dítě MeSH
- genotyp MeSH
- imunofenotypizace MeSH
- kojenec MeSH
- lidé MeSH
- mutace MeSH
- NADP metabolismus MeSH
- NADPH-oxidasy metabolismus MeSH
- neutrofily imunologie metabolismus MeSH
- předškolní dítě MeSH
- průtoková cytometrie MeSH
- rizikové faktory MeSH
- Check Tag
- dítě MeSH
- kojenec MeSH
- lidé MeSH
- mužské pohlaví MeSH
- předškolní dítě MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Egypt MeSH
Dehydrogenase/reductase (SDR family) member 3 (DHRS3), also known as retinal short-chain dehydrogenase/reductase (retSDR1) is a member of SDR16C family. This family is thought to be NADP(H) dependent and to have multiple substrates; however, to date, only all-trans-retinal has been identified as a DHRS3 substrate. The reductive reaction catalysed by DHRS3 seems to be physiological, and recent studies proved the importance of DHRS3 for maintaining suitable retinoic acid levels during embryonic development in vivo. Although it seems that DHRS3 is an important protein, knowledge of the protein and its properties is quite limited, with the majority of information being more than 15 years old. This study aimed to generate a more comprehensive characterisation of the DHRS3 protein. Recombinant enzyme was prepared and demonstrated to be a microsomal, integral-membrane protein with the C-terminus oriented towards the cytosol, consistent with its preference of NADPH as a cofactor. It was determined that DHRS3 also participates in the metabolism of other endogenous compounds, such as androstenedione, estrone, and DL-glyceraldehyde, and in the biotransformation of xenobiotics (e.g., NNK and acetohexamide) in addition to all-trans-retinal. Purified and reconstituted enzyme was prepared for the first time and will be used for further studies. Expression of DHRS3 was shown at the level of both mRNA and protein in the human liver, testis and small intestine. This new information could open other areas of DHRS3 protein research.
- MeSH
- alkoholoxidoreduktasy metabolismus MeSH
- cytosol metabolismus MeSH
- jaterní mikrozomy enzymologie metabolismus MeSH
- játra enzymologie metabolismus MeSH
- lidé MeSH
- membránové proteiny metabolismus MeSH
- NADH, NADPH oxidoreduktasy metabolismus MeSH
- NADP metabolismus MeSH
- Sf9 buňky MeSH
- Spodoptera metabolismus MeSH
- syntázy mastných kyselin metabolismus MeSH
- tenké střevo enzymologie metabolismus MeSH
- testis enzymologie metabolismus MeSH
- tretinoin metabolismus MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Current standard methods for kinetic and genomic modeling cannot provide deep insight into metabolic regulation. Here, we developed and evaluated a multi-scale kinetic modeling approach applicable to any prokaryote. Specifically, we highlight the primary metabolism of the cyanobacterium Synechococcus elongatus PCC 7942. The model bridges metabolic data sets from cells grown at different CO2 conditions by integrating transcriptomic data and isozymes. Identification of the regulatory roles of isozymes allowed the calculation and explanation of the absolute metabolic concentration of 3-phosphoglycerate. To demonstrate that this method can characterize any isozyme, we determined the function of two glycolytic glyceraldehyde-3-phosphate dehydrogenases: one co-regulates high concentrations of the 3-phosphoglycerate, the other shifts the bifurcation point in hexose regulation, and both improve biomass production. Moreover, the regulatory roles of multiple phosphoglycolate phosphatases were defined for varying (non-steady) CO2 conditions, suggesting their protective role against toxic photorespiratory intermediates.
- MeSH
- adenosintrifosfát metabolismus MeSH
- bakteriální proteiny chemie fyziologie MeSH
- glyceraldehyd-3-fosfátdehydrogenasy chemie fyziologie MeSH
- homeostáza MeSH
- izoenzymy chemie fyziologie MeSH
- kinetika MeSH
- NADP metabolismus MeSH
- oxid uhličitý MeSH
- oxidace-redukce MeSH
- Synechococcus enzymologie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH