The adaptive immune response critically hinges on the functionality of T cell receptors, governed by complex molecular mechanisms, including ubiquitination. In this study, we delved into the role of in T cell immunity, focusing on T cell-B cell conjugate formation and T cell activation. Using a CRISPR-Cas9 screening approach targeting deubiquitinases genes in Jurkat T cells, we identified BAP1 as a key positive regulator of T cell-B cell conjugate formation. Subsequent investigations into BAP1 knockout cells revealed impaired T cell activation, evidenced by decreased MAPK and NF-kB signaling pathways and reduced CD69 expression upon T cell receptor stimulation. Flow cytometry and qPCR analyses demonstrated that BAP1 deficiency leads to decreased surface expression of T cell receptor complex components and reduced mRNA levels of the co-stimulatory molecule CD28. Notably, the observed phenotypes associated with BAP1 knockout are specific to T cells and fully dependent on BAP1 catalytic activity. In-depth RNA-seq and mass spectrometry analyses further revealed that BAP1 deficiency induces broad mRNA and protein expression changes. Overall, our findings elucidate the vital role of BAP1 in T cell biology, especially in T cell-B cell conjugate formation and T cell activation, offering new insights and directions for future research in immune regulation.
- MeSH
- aktivace lymfocytů * imunologie MeSH
- B-lymfocyty * imunologie metabolismus MeSH
- Jurkat buňky MeSH
- lidé MeSH
- nádorové supresorové proteiny * metabolismus genetika MeSH
- receptory antigenů T-buněk * metabolismus MeSH
- signální transdukce MeSH
- T-lymfocyty * imunologie metabolismus MeSH
- thiolesterasa ubikvitinu * genetika metabolismus nedostatek MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
Intestinal epithelial cells have the capacity to upregulate MHCII molecules in response to certain epithelial-adhesive microbes, such as segmented filamentous bacteria (SFB). However, the mechanism regulating MHCII expression as well as the impact of epithelial MHCII-mediated antigen presentation on T cell responses targeting those microbes remains elusive. Here, we identify the cellular network that regulates MHCII expression on the intestinal epithelium in response to SFB. Since MHCII on the intestinal epithelium is dispensable for SFB-induced Th17 response, we explored other CD4+ T cell-based responses induced by SFB. We found that SFB drive the conversion of cognate CD4+ T cells to granzyme+ CD8α+ intraepithelial lymphocytes. These cells accumulate in small intestinal intraepithelial space in response to SFB. Yet, their accumulation is abrogated by the ablation of MHCII on the intestinal epithelium. Finally, we show that this mechanism is indispensable for the SFB-driven increase in the turnover of epithelial cells in the ileum. This study identifies a previously uncharacterized immune response to SFB, which is dependent on the epithelial MHCII function.
The establishment of long-lasting immunity against pathogens is facilitated by the germinal center (GC) reaction, during which B cells increase their antibody affinity and differentiate into antibody-secreting cells (ASC) and memory cells. These events involve modifications in chromatin packaging that orchestrate the profound restructuring of gene expression networks that determine cell fate. While several chromatin remodelers were implicated in lymphocyte functions, less is known about SMARCA5. Here, using ribosomal pull-down for analyzing translated genes in GC B cells, coupled with functional experiments in mice, we identified SMARCA5 as a key chromatin remodeler in B cells. While the naive B cell compartment remained unaffected following conditional depletion of Smarca5, effective proliferation during B cell activation, immunoglobulin class switching, and as a result GC formation and ASC differentiation were impaired. Single-cell multiomic sequencing analyses revealed that SMARCA5 is crucial for facilitating the transcriptional modifications and genomic accessibility of genes that support B cell activation and differentiation. These findings offer novel insights into the functions of SMARCA5, which can be targeted in various human pathologies.
- MeSH
- adenosintrifosfatasy MeSH
- aktivace lymfocytů imunologie MeSH
- B-lymfocyty * metabolismus imunologie MeSH
- buněčná diferenciace * MeSH
- chromozomální proteiny, nehistonové * metabolismus genetika MeSH
- myši inbrední C57BL MeSH
- myši MeSH
- přesmyk imunoglobulinových tříd genetika MeSH
- restrukturace chromatinu * MeSH
- zárodečné centrum lymfatické uzliny * imunologie metabolismus MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
A resilient immune system is characterized by its capacity to respond appropriately to challenges, such as infections, and it is crucial in vaccine response. Here we report a paired randomized intervention-control trial in which we evaluated the effect of microbially rich soil on immune resilience and pneumococcal vaccine response. Twenty-five age and sex matched pairs of volunteers were randomized to intervention and control groups. The intervention group rubbed hands three times a day in microbially rich soil until participants received a pneumococcal vaccine on day 14. Vaccine response, skin and gut bacteriome and blood cytokine levels were analyzed on days 0, 14 and 35. Peripheral blood mononuclear cells (PBMCs) were stimulated with vaccine components and autoclaved soil for cytokine production. Commensal bacterial community shifted only in the intervention group during the 14-day intervention period. When PBMCs collected on day 14 before the vaccination were stimulated with the vaccine components, IFN-y production increased in the intervention but not in the control group. On day 35, vaccination induced a robust antibody response in both groups. In parallel, gut bacterial community was associated with TGF-β plasma levels and TGF-β decrease in plasma was lower in the intervention group. The results indicate that exposure to microbially rich soil can modulate the cell-mediated immunity to components in pneumococcal vaccine.
- MeSH
- buněčná imunita * MeSH
- cytokiny metabolismus krev MeSH
- dospělí MeSH
- kůže * imunologie mikrobiologie MeSH
- leukocyty mononukleární * imunologie metabolismus MeSH
- lidé středního věku MeSH
- lidé MeSH
- mikrobiota imunologie MeSH
- pneumokokové infekce prevence a kontrola imunologie MeSH
- pneumokokové vakcíny * imunologie aplikace a dávkování MeSH
- půdní mikrobiologie MeSH
- střevní mikroflóra imunologie MeSH
- vakcinace MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- randomizované kontrolované studie MeSH
CD8+ T cells are essential for adaptive immunity against infection and tumors. Their ability to proliferate after stimulation is crucial to their functionality. Dendritic cells (DCs) are professional antigen-presenting cells that induce their proliferation. Here, we show that thapsigargin-induced LAD2 mast cell (MC) line-released products can impair the ability of monocyte-derived DCs to induce CD8+ T-cell proliferation and the generation of Th1 cytokine-producing T cells. We found that culture medium conditioned with LAD2 MCs previously stimulated with thapsigargin (thapsLAD2) induces maturation of DCs as determined by the maturation markers CD80, CD83, CD86, and HLA-DR. However, thapsLAD2-matured DCs produced no detectable TNFα or IL-12 during the maturation. In addition, although their surface expression of PD-L1 was comparable with the immature or TLR7/8-agonist (R848)-matured DCs, their TIM-3 expression was significantly higher than in immature DCs and even much higher than in R848-matured DCs. In addition, contrary to R848-matured DCs, the thapsLAD2-matured DCs only tended to induce enhanced proliferation of CD4+ T cells than immature DCs. For CD8+ T cells, this tendency was not even detected because thapsLAD2-matured and immature DCs comparably induced their proliferation, which contrasted with the significantly enhanced proliferation induced by R848-matured DCs. Furthermore, these differences were comparably recapitulated in the ability of the tested DCs to induce IFNγ- and IFNγ/TNFα-producing T cells. These findings show a novel mechanism of MC-mediated regulation of adaptive immune responses.
- MeSH
- aktivace lymfocytů * účinky léků imunologie MeSH
- buněčná diferenciace * účinky léků MeSH
- buněčné linie MeSH
- buněčný receptor 2 viru hepatitidy A metabolismus MeSH
- CD8-pozitivní T-lymfocyty * imunologie účinky léků MeSH
- cytokiny metabolismus MeSH
- dendritické buňky * imunologie účinky léků metabolismus MeSH
- imidazoly farmakologie MeSH
- lidé MeSH
- mastocyty * imunologie účinky léků metabolismus MeSH
- monocyty imunologie účinky léků metabolismus MeSH
- proliferace buněk * účinky léků MeSH
- thapsigargin * farmakologie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
T cells are pivotal in the adaptive immune defense, necessitating a delicate balance between robust response against infections and self-tolerance. Their activation involves intricate cross-talk among signaling pathways triggered by the T-cell antigen receptors (TCR) and co-stimulatory or inhibitory receptors. The molecular regulation of these complex signaling networks is still incompletely understood. Here, we identify the adaptor protein ABIN1 as a component of the signaling complexes of GITR and OX40 co-stimulation receptors. T cells lacking ABIN1 are hyper-responsive ex vivo, exhibit enhanced responses to cognate infections, and superior ability to induce experimental autoimmune diabetes in mice. ABIN1 negatively regulates p38 kinase activation and late NF-κB target genes. P38 is at least partially responsible for the upregulation of the key effector proteins IFNG and GZMB in ABIN1-deficient T cells after TCR stimulation. Our findings reveal the intricate role of ABIN1 in T-cell regulation.
- MeSH
- adaptorové proteiny signální transdukční * metabolismus genetika MeSH
- aktivace lymfocytů imunologie genetika MeSH
- cytotoxické T-lymfocyty * imunologie metabolismus MeSH
- diabetes mellitus 1. typu imunologie genetika metabolismus MeSH
- glukokortikoidy indukovaný protein související s TNRF MeSH
- interferon gama metabolismus MeSH
- lidé MeSH
- mitogenem aktivované proteinkinasy p38 metabolismus MeSH
- myši inbrední C57BL MeSH
- myši knockoutované MeSH
- myši MeSH
- NF-kappa B metabolismus MeSH
- receptory antigenů T-buněk metabolismus MeSH
- receptory OX40 metabolismus genetika MeSH
- signální transdukce * MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
BACKGROUND: SARS-CoV-2, which causes COVID-19, has killed more than 7 million people worldwide. Understanding the development of postinfectious and postvaccination immune responses is necessary for effective treatment and the introduction of appropriate antipandemic measures. OBJECTIVES: We analysed humoral and cell-mediated anti-SARS-CoV-2 immune responses to spike (S), nucleocapsid (N), membrane (M), and open reading frame (O) proteins in individuals collected up to 1.5 years after COVID-19 onset and evaluated immune memory. METHODS: Peripheral blood mononuclear cells and serum were collected from patients after COVID-19. Sampling was performed in two rounds: 3-6 months after infection and after another year. Most of the patients were vaccinated between samplings. SARS-CoV-2-seronegative donors served as controls. ELISpot assays were used to detect SARS-CoV-2-specific T and B cells using peptide pools (S, NMO) or recombinant proteins (rS, rN), respectively. A CEF peptide pool consisting of selected viral epitopes was applied to assess the antiviral T-cell response. SARS-CoV-2-specific antibodies were detected via ELISA and a surrogate virus neutralisation assay. RESULTS: We confirmed that SARS-CoV-2 infection induces the establishment of long-term memory IgG+ B cells and memory T cells. We also found that vaccination enhanced the levels of anti-S memory B and T cells. Multivariate comparison also revealed the benefit of repeated vaccination. Interestingly, the T-cell response to CEF was lower in patients than in controls. CONCLUSION: This study supports the importance of repeated vaccination for enhancing immunity and suggests a possible long-term perturbation of the overall antiviral immune response caused by SARS-CoV-2 infection.
- MeSH
- B-lymfocyty imunologie MeSH
- buněčná imunita imunologie MeSH
- COVID-19 * imunologie MeSH
- dospělí MeSH
- ELISPOT MeSH
- glykoprotein S, koronavirus imunologie MeSH
- humorální imunita MeSH
- imunologická paměť MeSH
- leukocyty mononukleární imunologie MeSH
- lidé středního věku MeSH
- lidé MeSH
- protilátky virové * krev imunologie MeSH
- SARS-CoV-2 * imunologie MeSH
- senioři MeSH
- T-lymfocyty imunologie MeSH
- vakcíny proti COVID-19 imunologie MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- MeSH
- buněčná imunita účinky léků MeSH
- COVID-19 * mortalita prevence a kontrola MeSH
- dezinformace MeSH
- karanténa MeSH
- lidé MeSH
- mRNA vakcíny MeSH
- vakcíny proti COVID-19 MeSH
- všeobecná preventivní opatření metody MeSH
- Check Tag
- lidé MeSH
- Geografické názvy
- Česká republika MeSH
- Evropa MeSH