The prevalence of centenarians, people who lived 100 years and longer, is steadily growing in the last decades. This exceptional longevity is based on multifaceted processes influenced by a combination of intrinsic and extrinsic factors such as sex, (epi-)genetic factors, gut microbiota, cellular metabolism, exposure to oxidative stress, immune status, cardiovascular risk factors, environmental factors, and lifestyle behavior. Epidemiologically, the incidence rate of cardiovascular diseases is reduced in healthy centenarians along with late onset of age-related diseases compared with the general aged population. Understanding the mechanisms that affect vascular ageing in centenarians and the underlying factors could offer valuable insights for developing strategies to improve overall healthy life span in the elderly. This review discusses these key factors influencing vascular ageing and how their modulation could foster healthy longevity.
- MeSH
- Longevity * physiology MeSH
- Cardiovascular Diseases physiopathology epidemiology MeSH
- Humans MeSH
- Oxidative Stress physiology MeSH
- Risk Factors MeSH
- Aged, 80 and over MeSH
- Aging * physiology MeSH
- Gastrointestinal Microbiome physiology MeSH
- Healthy Aging physiology MeSH
- Life Style MeSH
- Check Tag
- Humans MeSH
- Male MeSH
- Aged, 80 and over MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
- Review MeSH
The tumor microenvironment (TME) is a complex, highly structured, and dynamic ecosystem that plays a pivotal role in the progression of both primary and metastatic tumors. Precise assessment of the dynamic spatiotemporal features of the TME is crucial for understanding cancer evolution and designing effective therapeutic strategies. Cancer is increasingly recognized as a systemic disease, influenced not only by the TME, but also by a multitude of systemic factors, including whole-body metabolism, gut microbiome, endocrine signaling, and circadian rhythm. In this review, we summarize the intrinsic, extrinsic, and systemic factors contributing to the formation of 'cold' tumors within the framework of the cancer-immunity cycle. Correspondingly, we discuss potential strategies for converting 'cold' tumors into 'hot' ones to enhance therapeutic efficacy.
- MeSH
- Circadian Rhythm MeSH
- Humans MeSH
- Tumor Microenvironment * immunology MeSH
- Neoplasms * pathology therapy MeSH
- Gastrointestinal Microbiome MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Review MeSH
Nitrogen, phosphorus, and potassium are the three most essential micronutrients which play major roles in plant survivability by being a structural or non-structural component of the cell. Plants acquire these nutrients from soil in the fixed (NO3 ̄, NH4+) and solubilized forms (K+, H2PO4- and HPO42-). In soil, the fixed and solubilized forms of nutrients are unavailable or available in bare minimum amounts; therefore, agrochemicals were introduced. Agrochemicals, mined from the deposits or chemically prepared, have been widely used in the agricultural farms over the decades for the sake of higher production of the crops. The excessive use of agrochemicals has been found to be deleterious for humans, as well as the environment. In the environment, agrochemical usage resulted in soil acidification, disturbance of microbial ecology, and eutrophication of aquatic and terrestrial ecosystems. A solution to such devastating agro-input was found to be substituted by macronutrients-availing microbiomes. Macronutrients-availing microbiomes solubilize and fix the insoluble form of nutrients and convert them into soluble forms without causing any significant harm to the environment. Microbes convert the insoluble form to the soluble form of macronutrients (nitrogen, phosphorus, and potassium) through different mechanisms such as fixation, solubilization, and chelation. The microbiomes having capability of fixing and solubilizing nutrients contain some specific genes which have been reported in diverse microbial species surviving in different niches. In the present review, the biodiversity, mechanism of action, and genomics of different macronutrients-availing microbiomes are presented.
- MeSH
- Bacteria * metabolism genetics classification MeSH
- Biodiversity * MeSH
- Biotechnology * MeSH
- Potassium metabolism MeSH
- Nitrogen metabolism MeSH
- Phosphorus metabolism MeSH
- Microbiota * MeSH
- Soil chemistry MeSH
- Soil Microbiology MeSH
- Crops, Agricultural MeSH
- Agriculture MeSH
- Nutrients * metabolism MeSH
- Publication type
- Journal Article MeSH
- Review MeSH
The diversity of cultivable endophytic fungi in native subshrubs of the Brazilian Cerrado is largely unknown. This study investigated the cultivable endophytic mycobiome of stems, leaves, and flowers of Peltaea polymorpha (Malvaceae). In total, 208 endophytic fungi were isolated, 95 from stems, 65 from leaves, and 48 from flowers. The isolates were classified as ascomycetes belonging to three classes, eight orders, ten families, 12 genera, and 31 species. Diaporthe, Nigrospora, and Colletotrichum were the dominant genera in the three analyzed organs. The richness estimators suggested that the number of species might be slightly higher than observed. The highest values for the Shannon and Simpson diversity indices were observed in stems. Beta diversity showed overlapping of fungal communities in different organs, with a high rate of sharing of taxa. Furthermore, the dominant primary fungal lifestyles were plant pathogens and saprobes. Our findings show that the cultivable endophytic fungal community of P. polymorpha is species-rich and that communities in different organs share genera and species.
- MeSH
- Ascomycota isolation & purification classification genetics MeSH
- Biodiversity * MeSH
- Endophytes * classification isolation & purification genetics growth & development MeSH
- Phylogeny MeSH
- Fungi * classification isolation & purification genetics growth & development MeSH
- Flowers microbiology MeSH
- Plant Leaves microbiology MeSH
- Mycobiome MeSH
- Grassland MeSH
- Plant Stems microbiology MeSH
- Tropical Climate MeSH
- Publication type
- Journal Article MeSH
- Geographicals
- Brazil MeSH
Necrotizing enterocolitis (NEC) is one of the most devastating intestinal diseases observed in preterm in the first days of life. Researchers have recently focused on potential predictive biomarkers for early and concomitant diagnoses. Thus, we inquired about the linkage of intestinal dysbiosis, one of the most important factors in NEC development to the gut microbiota. In this study, the systematic differences in the bacterial composition between neonates affected by NEC and healthy newborns were highlighted by metagenomic analysis. The next-generation sequencing of the V3-V4 variable region of the 16S rRNA gene and gene-specific qPCR analyzed the untargeted gut microbiota. Total bacteria, total and fecal coliform loads in stool samples with NEC were higher than control. OTU-level relative abundances of NEC infant was characterized by Firmicutes and Bacteroidetes at phylum levels. At the genus level, NEC stool was identified by the lack of Klebsiella and the presence of Roseburia, Blautia, and Parasutterella. Finally, Clostridium fessum was the predominant species of Clostridium genus in disease and healthy specimens at the species level, whereas Clostridium jeddahitimonense was at NEC diagnosis. Despite a strong relationship between pathophysiology and characterization of gut microbiota at a clinical diagnosis of NEC, our results emphasize the broad difficulty in identifying potential biomarkers.
- MeSH
- Bacteria * classification genetics isolation & purification MeSH
- DNA, Bacterial genetics MeSH
- Dysbiosis microbiology MeSH
- Feces * microbiology MeSH
- Humans MeSH
- Metagenomics MeSH
- Enterocolitis, Necrotizing * microbiology MeSH
- Infant, Premature MeSH
- Infant, Newborn MeSH
- RNA, Ribosomal, 16S * genetics MeSH
- Gastrointestinal Microbiome * MeSH
- High-Throughput Nucleotide Sequencing MeSH
- Check Tag
- Humans MeSH
- Male MeSH
- Infant, Newborn MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
Endophytes are symbionts that live in healthy plants and potentially improve the health of plant holobionts. Here, we investigated the bacterial endophyte community of Citrus reticulata grown in the northern Persian Gulf. Bacteria were isolated seasonally from healthy trees (root, stem, bark, trunk, leaf, and crown tissues) in four regions of Hormozgan province (i.e., Ahmadi, Siyahoo, Sikhoran, Roudan), a subtropical hot region in Iran. A total of 742 strains from 17 taxa, 3 phyla, and 5 orders were found, most of which belonged to Actinobacteria (Actinobacteriales) as the dominant group, followed by Firmicutes (Bacillales), Proteobacteria (Sphingomonadales, Rhizobiales), and Cyanobacteria (Synechoccales). The genera included Altererythrobacter, Arthrobacter, Bacillus, Cellulosimicrobium, Curtobacterium, Kocuria, Kytococcus, Methylopila, Mycobacterium, Nocardioides, Okiabacterium, Paracraurococcus, and Psychrobacillus. The most frequently occurring species included Psychrobacillus psychrodurans, Kytococcus schroetri, and Bacillus cereus. In addition, the overall colonization frequency and variability of endophytes were higher on the trunks. The leaves showed the lowest species variability in all sampling periods. The frequency of endophyte colonization was also higher in summer. The Shannon-Wiener (H') and Simpson indices varied with all factors, i.e., region, season, and tissue type, with the maximum in Roudan. Furthermore, 52.9% of the strains were capable of nitrogen fixation, and 70% produced antagonistic hydrogen cyanide (HCN). Thus, C. reticulata harbors a variety of bioactive bacterial endophytes that could be beneficial for host fitness in such harsh environments.
- MeSH
- Bacteria * classification metabolism isolation & purification genetics MeSH
- Biodiversity MeSH
- Citrus * microbiology MeSH
- Endophytes * classification isolation & purification metabolism genetics MeSH
- Nitrogen Fixation * MeSH
- Phylogeny MeSH
- Plant Leaves microbiology MeSH
- Microbiota * MeSH
- RNA, Ribosomal, 16S genetics MeSH
- Seasons MeSH
- Publication type
- Journal Article MeSH
- Geographicals
- Iran MeSH
INTRODUCTION: Impulsivity and aggression are often interlinked behavioral traits that have major implications for our society. Therefore, the study of this phenomenon and derivative interventions that could lead to better control of impulsive aggression are of interest. METHODS: We analyzed the composition and diversity of the gut bacterial microbiome of 33 impulsively violent female convicts with dissocial personality disorder and 20 non-impulsive age-matched women. Further, levels of assorted neurotransmitters and short-chain fatty acids (SCFAs) were analyzed in serum and stool samples. We also assessed all participants using a battery of psychological questionnaires and tested possible correlations between the collected clinical data and the composition and diversity of their microbiomes and metabolites. RESULTS: We identified four bacterial amplicon sequencing variants that were differentially abundant in non-impulsive versus impulsive women - the genera Bacteroides, Barnesiella, and the order Rhodospirillales were more abundant in impulsive women. In contrast, the genus Catenisphaera was more abundant in non-impulsive women. Fecal tryptophan levels were significantly higher in impulsive women. Association analysis revealed a strong positive intercorrelation between most fecal SCFAs in the entire dataset. CONCLUSIONS: Our study demonstrated possible associations between gut microbiomes and their metabolites and impulsive behavior in a unique cohort of prisoners convicted of violent assaults and a matched group of non-impulsive women from the same prison. Genus Bacteroides, which was differentially abundant in the two groups, encoded enzymes that affect serotonin pathways and could contribute to this maladaptive behavior. Similarly, increased fecal tryptophan levels in impulsive individuals could affect neuronal circuits in the brain. INTRODUCTION: Impulsivity and aggression are often interlinked behavioral traits that have major implications for our society. Therefore, the study of this phenomenon and derivative interventions that could lead to better control of impulsive aggression are of interest. METHODS: We analyzed the composition and diversity of the gut bacterial microbiome of 33 impulsively violent female convicts with dissocial personality disorder and 20 non-impulsive age-matched women. Further, levels of assorted neurotransmitters and short-chain fatty acids (SCFAs) were analyzed in serum and stool samples. We also assessed all participants using a battery of psychological questionnaires and tested possible correlations between the collected clinical data and the composition and diversity of their microbiomes and metabolites. RESULTS: We identified four bacterial amplicon sequencing variants that were differentially abundant in non-impulsive versus impulsive women - the genera Bacteroides, Barnesiella, and the order Rhodospirillales were more abundant in impulsive women. In contrast, the genus Catenisphaera was more abundant in non-impulsive women. Fecal tryptophan levels were significantly higher in impulsive women. Association analysis revealed a strong positive intercorrelation between most fecal SCFAs in the entire dataset. CONCLUSIONS: Our study demonstrated possible associations between gut microbiomes and their metabolites and impulsive behavior in a unique cohort of prisoners convicted of violent assaults and a matched group of non-impulsive women from the same prison. Genus Bacteroides, which was differentially abundant in the two groups, encoded enzymes that affect serotonin pathways and could contribute to this maladaptive behavior. Similarly, increased fecal tryptophan levels in impulsive individuals could affect neuronal circuits in the brain.
- MeSH
- Aggression physiology MeSH
- Adult MeSH
- Feces * microbiology chemistry MeSH
- Impulsive Behavior * physiology MeSH
- Fatty Acids, Volatile analysis metabolism MeSH
- Middle Aged MeSH
- Humans MeSH
- Young Adult MeSH
- Gastrointestinal Microbiome * physiology MeSH
- Tryptophan blood metabolism MeSH
- Criminals MeSH
- Check Tag
- Adult MeSH
- Middle Aged MeSH
- Humans MeSH
- Young Adult MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
The growth and accumulation of active ingredients of Angelica sinensis were affected by rhizosphere soil microbial communities and soil environmental factors. However, the correlationship between growth and active ingredients and soil biotic and abiotic factors is still unclear. This study explored rhizosphere soil microbial community structures, soil physicochemical properties, enzyme activities, and their effects on the growth and active ingredient contents of A. sinensis in three principal cropping areas. Results indicated that the growth indices, ligustilide, ferulic acid contents, and soil environmental factors varied in cropping areas. Pearson correlation analysis revealed that the growth of A. sinensis was affected by organic matter, total nitrogen, total phosphorus, and available phosphorus; ferulic acid and ligustilide accumulation were related to soil catalase and alkaline phosphatase activities, respectively. Illumina MiSeq sequencing showed that the genera Mortierella and Conocybe were the dominant fungal communities, and Sphingomonas, Pseudomonas, Bryobacter, and Lysobacter were the main bacterial communities associated with the rhizosphere soil. Kruskal-Wallis one-way ANOVA and Spearman correlation conjoint analysis demonstrated a significant positive correlation (p < 0.001) among the composition of the rhizosphere microbial communities at all three sampling sites. The growth and active ingredient accumulation of A. sinensis not only was significantly susceptible to the bacterial communities of Sphingomonas, Epicoccum, Marivita, Muribaculum, and Gemmatimonas but also were significantly influenced by the fungal communities of Inocybe, Septoria, Tetracladium, and Mortierella (p < 0.05). Our findings provide a scientific basis for understanding the relationship between the growth and active ingredients in A. sinensis and their corresponding rhizosphere soil microbial communities, soil physicochemical properties, and enzyme activities.
- MeSH
- Angelica sinensis * growth & development chemistry microbiology MeSH
- Bacteria classification genetics isolation & purification MeSH
- Nitrogen analysis MeSH
- Phosphorus analysis MeSH
- Fungi classification genetics isolation & purification MeSH
- Microbiota * MeSH
- Soil chemistry MeSH
- Soil Microbiology * MeSH
- Rhizosphere * MeSH
- Publication type
- Journal Article MeSH
- Geographicals
- China MeSH
The isolation and study of fungi within specific contexts yield valuable insights into the intricate relationships between fungi and ecosystems. Unlike culture-independent approaches, cultivation methods are advantageous in this context because they provide standardized replicates, specific species isolation, and easy sampling. This study aimed to understand the ecological process using a microcosm system with pesticide concentrations similar to those found in the soil, in contrast to high doses, from the isolation of the enriched community. The atrazine concentrations used were 0.02 mg/kg (control treatment), 300 ng/kg (treatment 1), and 3000 ng/kg (treatment 2), using a 28-day microcosm system. Ultimately, the isolation resulted in 561 fungi classified into 76 morphospecies. The Ascomycota phylum was prevalent, with Purpureocillium, Aspergillus, and Trichoderma being consistently isolated, denoting robust and persistent genera. Diversity analyses showed that the control microcosms displayed more distinct fungal morphospecies, suggesting the influence of atrazine on fungal communities. Treatment 2 (higher atrazine concentration) showed a structure comparable to that of the control, whereas treatment 1 (lower atrazine concentration) differed significantly, indicating that atrazine concentration impacted community variance. Higher atrazine addition subtly altered ligninolytic fungal community dynamics, implying its potential for pesticide degradation. Finally, variations in atrazine concentrations triggered diverse community responses over time, shedding light on fungal resilience and adaptive strategies against pesticides.
- MeSH
- Atrazine * metabolism pharmacology MeSH
- Biodegradation, Environmental MeSH
- Phylogeny MeSH
- Herbicides * metabolism MeSH
- Fungi * classification isolation & purification metabolism drug effects genetics growth & development MeSH
- Soil Pollutants metabolism MeSH
- Mycobiome * drug effects MeSH
- Soil Microbiology MeSH
- Publication type
- Journal Article MeSH
BACKGROUND AND AIMS: Neurodegenerative disorders affecting the brain and spinal cord are caused by a large number of factors. More recently, imbalances in gut microbiota are found to be one factor linked directly to neurological dysfunction. Probiotics prevent cognitive decline. For the first time, the effect of probiotics was assessed by monitoring the concentrations of the neurodegeneration biomarker neurofilament light chains (NfL) in a well-defined group of community-dwelling individuals. The aim of this study was to determine whether administration of our new probiotics could reduce NfL concentrations. METHODS: The serum NfL concentrations were measured in total of 190 serum samples of 85 older community-dwelling individuals. The participants were randomly divided into two groups: the PROPLA group and the PLAPRO group. Individuals in the PROPLA group started with a three-month use of probiotics and continued with a three-month use of placebo while the order was reversed in the PLAPRO group. The participants underwent detailed examinations at three time points: at baseline, in three and six months. The serum NfL concentrations were determined using ultrasensitive single-molecule array (SIMOA) assay. RESULTS: Longitudinal comparisons of NfL concentrations between samplings at different time points in the PROPLA and PLAPRO groups showed no statistically significant differences. Baseline NfL concentrations at the beginning of the study and in the succeeding samplings were not significantly different for the two groups in cross-sectional comparisons. CONCLUSIONS: Serum NfL concentrations were not influenced by the three-month use of probiotics.
- MeSH
- Biomarkers blood MeSH
- Double-Blind Method MeSH
- Middle Aged MeSH
- Humans MeSH
- Neurofilament Proteins * blood MeSH
- Probiotics * therapeutic use MeSH
- Aged, 80 and over MeSH
- Aged MeSH
- Gastrointestinal Microbiome MeSH
- Check Tag
- Middle Aged MeSH
- Humans MeSH
- Male MeSH
- Aged, 80 and over MeSH
- Aged MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
- Multicenter Study MeSH
- Randomized Controlled Trial MeSH