Element content and expression of genes of interest on single cell types, such as stomata, provide valuable insights into their specific physiology, improving our understanding of leaf gas exchange regulation. We investigated how far differences in stomatal conductance (gs ) can be ascribed to changes in guard cells functioning in amphistomateous leaves. gs was measured during the day on both leaf sides, on well-watered and drought-stressed trees (two Populus euramericana Moench and two Populus nigra L. genotypes). In parallel, guard cells were dissected for element content and gene expressions analyses. Both were strongly arranged according to genotype, and drought had the lowest impact overall. Normalizing the data by genotype highlighted a structure on the basis of leaf sides and time of day both for element content and gene expression. Guard cells magnesium, phosphorus, and chlorine were the most abundant on the abaxial side in the morning, where gs was at the highest. In contrast, genes encoding H+ -ATPase and aquaporins were usually more abundant in the afternoon, whereas genes encoding Ca2+ -vacuolar antiporters, K+ channels, and ABA-related genes were in general more abundant on the adaxial side. Our work highlights the unique physiology of each leaf side and their analogous rhythmicity through the day.
- MeSH
- genotyp MeSH
- komplementární DNA genetika izolace a purifikace MeSH
- listy rostlin genetika metabolismus MeSH
- mikroanalýza elektronovou sondou MeSH
- období sucha MeSH
- Populus klasifikace genetika metabolismus MeSH
- protonové ATPasy genetika metabolismus MeSH
- průduchy rostlin genetika metabolismus MeSH
- regulace genové exprese u rostlin MeSH
- RNA rostlin genetika izolace a purifikace MeSH
- rostlinné proteiny genetika metabolismus MeSH
- stromy genetika metabolismus MeSH
- transpirace rostlin fyziologie MeSH
- voda fyziologie MeSH
- vývoj rostlin MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Plant growth is affected by light availability, light capture, and the efficiency of light energy utilisation within the photosynthetic uptake processes. The radiation use efficiency (RUE) of four even-aged, fully stocked mature Norway spruce stands along a temperature, precipitation, and altitudinal gradient of the Czech Republic was investigated. A new straightforward, methodological approach involving an analysis of digital hemispherical photographs for RUE estimation was applied. The highest annual RUE value (0.72 g MJ-1) was observed in the stand characterised by the lowest mean annual air temperature, the highest annual amount of precipitation, located at the highest altitude, and with the lowest site index reflecting site fertility. From the viewpoint of global climate change mitigation, this stand fixed 4.14 Mg ha-1 and 13.93 Mg ha-1 of carbon units and CO2 molecules into above-ground biomass, respectively. The lowest RUE value (0.21 g MJ-1) within the studied growing season was found in the stand located at the lowest altitude representing the site with the highest mean air temperature and the lowest amount of precipitation where 1.27 Mg ha-1 and 4.28 Mg ha-1 of carbon units and CO2 molecules, respectively, were fixed. From the tested meteorological variables (mean air temperature, the monthly sums of temperature, precipitation, and air humidity), RUE was only significantly dependent on air temperature. Therefore, global warming can lead to diminishing RUE and carbon sequestration in Norway spruce stands, especially at low altitudes.
- MeSH
- klimatické změny * MeSH
- smrk * MeSH
- stromy MeSH
- teplota MeSH
- transpirace rostlin MeSH
- uhlík MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Česká republika MeSH
- Norsko MeSH
Transpiration in humid tropical forests modulates the global water cycle and is a key driver of climate regulation. Yet, our understanding of how tropical trees regulate sap flux in response to climate variability remains elusive. With a progressively warming climate, atmospheric evaporative demand [i.e., vapor pressure deficit (VPD)] will be increasingly important for plant functioning, becoming the major control of plant water use in the twenty-first century. Using measurements in 34 tree species at seven sites across a precipitation gradient in the neotropics, we determined how the maximum sap flux velocity (vmax) and the VPD threshold at which vmax is reached (VPDmax) vary with precipitation regime [mean annual precipitation (MAP); seasonal drought intensity (PDRY)] and two functional traits related to foliar and wood economics spectra [leaf mass per area (LMA); wood specific gravity (WSG)]. We show that, even though vmax is highly variable within sites, it follows a negative trend in response to increasing MAP and PDRY across sites. LMA and WSG exerted little effect on vmax and VPDmax, suggesting that these widely used functional traits provide limited explanatory power of dynamic plant responses to environmental variation within hyper-diverse forests. This study demonstrates that long-term precipitation plays an important role in the sap flux response of humid tropical forests to VPD. Our findings suggest that under higher evaporative demand, trees growing in wetter environments in humid tropical regions may be subjected to reduced water exchange with the atmosphere relative to trees growing in drier climates.
- MeSH
- lesy MeSH
- období sucha MeSH
- stromy * MeSH
- tlak par MeSH
- transpirace rostlin * MeSH
- voda MeSH
- Publikační typ
- časopisecké články MeSH
This study presents results from continuous measurements of stem CO2 efflux carried out for seven growing seasons in a young Norway spruce forest. The objective of the study was to determine differences in temperature sensitivity of stem CO2 efflux (Q10) during night (when sap flow is zero or nearly zero), during early afternoon (when the maximum rate of sap flow occurs) and during two transition periods between the aforementioned periods. The highest Q10 was recorded during the period of zero sap flow, while the lowest Q10 was observed in period of the highest sap flow. Calculating Q10 using only data from the period of zero sap flow resulted in a Q10 that was higher by as much as 19% compared with Q10 calculated using 24 h data. On the other hand, basing the calculation on data from the period of the highest sap flow yielded 5.6% lower Q10 than if 24 h data were used. Considering that change in CO2 efflux lagged in time behind changing stem temperature, there was only a small effect on calculated Q10 for periods with zero and the highest sap flow. A larger effect of the time lag (by as much as 15%) was observed for the two transition periods. Stem CO2 efflux was modelled based on the night CO2 efflux response to temperature. This model had a tendency to overestimate CO2 efflux during daytime, thus indicating potential daytime depression of stem CO2 efflux compared with the values predicated on the basis of temperature caused by CO2 transport upward in the sap flow. This view was supported by our results inasmuch as the overestimation grew with sap flow that was modelled on the basis of photosynthetically active radiation and vapour pressure deficit.
- MeSH
- cirkadiánní rytmus MeSH
- lesy MeSH
- oxid uhličitý metabolismus MeSH
- smrk fyziologie MeSH
- stonky rostlin fyziologie MeSH
- teplota MeSH
- transpirace rostlin * MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Česká republika MeSH
Conifers growing at high elevations need to optimize their stomatal conductance (gs ) for maximizing photosynthetic yield while minimizing water loss under less favourable thermal conditions. Yet the ability of high-elevation conifers to adjust their gs sensitivity to environmental drivers remains largely unexplored. We used 4 years of sap flow measurements to elucidate intraspecific and interspecific variability of gs in Larix decidua Mill. and Picea abies (L.) Karst along an elevational gradient and contrasting soil moisture conditions. Site- and species-specific gs response to main environmental drivers were examined, including vapour pressure deficit, air temperature, solar irradiance, and soil water potential. Our results indicate that maximum gs of L. decidua is >2 times higher, shows a more plastic response to temperature, and down-regulates gs stronger during atmospheric drought compared to P. abies. These differences allow L. decidua to exert more efficient water use, adjust to site-specific thermal conditions, and reduce water loss during drought episodes. The stronger plasticity of gs sensitivity to temperature and higher conductance of L. decidua compared to P. abies provide new insights into species-specific water use strategies, which affect species' performance and should be considered when predicting terrestrial water dynamics under future climatic change.
- MeSH
- borovice fyziologie MeSH
- cévnaté rostliny * fyziologie MeSH
- fyziologická adaptace MeSH
- modřín fyziologie MeSH
- období sucha MeSH
- průduchy rostlin fyziologie MeSH
- půda MeSH
- teplota MeSH
- transpirace rostlin fyziologie MeSH
- voda fyziologie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Root-hemiparasitic plants of the genus Rhinanthus acquire resources through a water-wasting physiological strategy based on high transpiration rate mediated by the accumulation of osmotically active compounds and constantly open stomata. Interestingly, they were also documented to withstand moderate water stress which agrees with their common occurrence in rather dry habitats. Here, we focused on the water-stress physiology of Rhinanthus alectorolophus by examining gas exchange, water relations, stomatal density, and biomass production and its stable isotope composition in adult plants grown on wheat under contrasting (optimal and drought-inducing) water treatments. We also tested the effect of water stress on the survival of Rhinanthus seedlings, which were watered either once (after wheat sowing), twice (after wheat sowing and the hemiparasite planting) or continuously (twice and every sixth day after that). Water shortage significantly reduced seedling survival as well as the biomass production and gas exchange of adult hemiparasites. In spite of that drought-stressed and even wilted plants from both treatments still considerably photosynthesized and transpired. Strikingly, low-irrigated plants exhibited significantly elevated photosynthetic rate compared with high-irrigated plants of the same water status. This might relate to biochemical adjustments of these plants enhancing the resource uptake from the host. Moreover, low-irrigated plants did not acclimatize to water stress by lowering their osmotic potential, perhaps due to the capability to tolerate drought without such an adjustment, as their osmotic potential at full turgor was already low. Contrary to results of previous studies, hemiparasites seem to close their stomata in response to severe drought stress and this happens probably passively after turgor is lost in guard cells. The physiological traits of hemiparasites, namely the low osmotic potential associated with their parasitic lifestyle and the ability to withstand drought and recover from the wilting likely enable them to grow in dry habitats. However, the absence of osmotic adjustment of adults and sensitivity of seedlings to severe drought stress demonstrated here may result in a substantial decline of the hemiparasitic species with ongoing climate change.
- MeSH
- biomasa MeSH
- dehydratace MeSH
- fotosyntéza MeSH
- fyziologický stres fyziologie MeSH
- kořeny rostlin MeSH
- listy rostlin anatomie a histologie fyziologie MeSH
- Orobanchaceae anatomie a histologie fyziologie MeSH
- průduchy rostlin anatomie a histologie fyziologie MeSH
- semenáček anatomie a histologie fyziologie MeSH
- transpirace rostlin MeSH
- voda * metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
The effect of temperature on stomatal conductance (gs) and corresponding gas exchange parameters was studied in two tree species with contrasting leaf anatomy and ecophysiology-a broadleaf angiosperm, Populus deltoides x nigra (poplar), and a needle-leaf gymnosperm, Pinus taeda (loblolly pine). Experiments were conducted in growth chambers across a leaf temperature range of 19-48°C. Manipulations of temperature were done in well-watered and drought soil conditions and under ambient (400 ppm) and elevated (800 ppm) air CO2 concentrations. Increases in leaf temperature caused stomatal opening at both ambient and elevated [CO2]. The gs increased by 42% in poplar and by 40% in loblolly pine when leaf temperature increased from 30°C to 40°C at a vapour pressure difference of 1 kPa. Stomatal limitation to photosynthesis decreased in elevated temperature in loblolly pine but not in poplar. The ratio of net photosynthesis to gs depended on leaf temperature, especially at high temperatures. Evaporative cooling of transpiring leaves resulted in reductions in leaf temperature up to 9°C in well-watered poplar but only 1°C in drought-stressed poplar and in loblolly pine. As global mean temperatures rise and temperature extremes become more frequent and severe, understanding the effect of temperature on gs, and modelling that relationship, will become increasingly important.
Efficient water management is essential for the survival of vascular plants under drought stress. While interrelations among drought stress, plant anatomy and physiological functions have been described in woody dicots, similar research is very limited for non-palm arborescent and shrubby monocots despite their generally high drought tolerance. In this study, potted transplants of Dracaena marginata Lam. in primary growth stage were exposed to several short- and long-term drought periods. Continuous measurements of sap flow and stem diameter, the evaluation of capacitance and leaf conductance, the quantification of non-structural carbohydrates (NSC), and organ-specific anatomical analyses were performed to reveal the mechanisms promoting plant resistance to limited soil moisture. The plants showed sensitive stomata regulation in the face of drying soil, but only intermediate resistance to water loss through cuticular transpiration. The water losses were compensated by water release from stem characterized by densely interconnected, parenchyma-rich ground tissue and considerable hydraulic capacitance. Our results suggest that the high concentration of osmotically active NSC in aboveground organs combined with the production of root pressures supported water uptake and the restoration of depleted reserves after watering. The described anatomical features and physiological mechanisms impart D. marginata with high resistance to irregular watering and long-term water scarcity. These findings should help to improve predictions with respect to the impacts of droughts on this plant group.
Strigolactones (SL) contribute to drought acclimatization in shoots, because SL-depleted plants are hypersensitive to drought due to stomatal hyposensitivity to abscisic acid (ABA). However, under drought, SL biosynthesis is repressed in roots, suggesting organ specificity in their metabolism and role. Because SL can be transported acropetally, such a drop may also affect shoots, as a systemic indication of stress. We investigated this hypothesis by analysing molecularly and physiologically wild-type (WT) tomato (Solanum lycopersicum) scions grafted onto SL-depleted rootstocks, compared with self-grafted WT and SL-depleted genotypes, during a drought time-course. Shoots receiving few SL from the roots behaved as if under mild stress even if irrigated. Their stomata were hypersensitive to ABA (likely via a localized enhancement of SL synthesis in shoots). Exogenous SL also enhanced stomata sensitivity to ABA. As the partial shift of SL synthesis from roots to shoots mimics what happens under drought, a reduction of root-produced SL might represent a systemic signal unlinked from shootward ABA translocation, and sufficient to prime the plant for better stress avoidance.
- MeSH
- biologické modely MeSH
- biosyntetické dráhy genetika MeSH
- dehydratace MeSH
- fenotyp MeSH
- fyziologický stres * genetika MeSH
- kořeny rostlin metabolismus MeSH
- kyselina abscisová metabolismus MeSH
- laktony metabolismus MeSH
- listy rostlin fyziologie MeSH
- messenger RNA genetika metabolismus MeSH
- období sucha * MeSH
- regulace genové exprese u rostlin MeSH
- rostlinné geny MeSH
- signální transdukce * MeSH
- Solanum lycopersicum genetika fyziologie MeSH
- transpirace rostlin MeSH
- voda fyziologie MeSH
- výhonky rostlin genetika metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
To better understand the long-term impact of Ophiostoma novo-ulmi Brasier on leaf physiology in 'Dodoens', a Dutch elm disease-tolerant hybrid, measurements of leaf area, leaf dry mass, petiole anatomy, petiole hydraulic conductivity, leaf and branch water potential, and branch sap flow were performed 3 years following an initial artificial inoculation. Although fungal hyphae were detected in fully expanded leaves, neither anatomical nor morphological traits were affected, indicating that there was no impact from the fungal hyphae on the leaves during leaf expansion. In contrast, however, infected trees showed both a lower transpiration rate of branches and a lower sap flow density. The long-term persistence of fungal hyphae inside vessels decreased the xylem hydraulic conductivity, but stomatal regulation of transpiration appeared to be unaffected as the leaf water potential in both infected and non-infected trees was similarly driven by the transpirational demands. Regardless of the fungal infection, leaves with a higher leaf mass per area ratio tended to have a higher leaf area-specific conductivity. Smaller leaves had an increased number of conduits with smaller diameters and thicker cell walls. Such a pattern could increase tolerance towards hydraulic dysfunction. Measurements of water potential and theoretical xylem conductivity revealed that petiole anatomy could predict the maximal transpiration rate. Three years following fungal inoculation, phenotypic expressions for the majority of the examined traits revealed a constitutive nature for their possible role in Dutch elm disease tolerance of 'Dodoens' trees.
- MeSH
- analýza hlavních komponent MeSH
- časové faktory MeSH
- hybridizace genetická MeSH
- kvantitativní znak dědičný * MeSH
- listy rostlin mikrobiologie fyziologie MeSH
- nemoci rostlin mikrobiologie MeSH
- Ophiostoma fyziologie MeSH
- stonky rostlin mikrobiologie fyziologie MeSH
- transpirace rostlin fyziologie MeSH
- Ulmus mikrobiologie fyziologie MeSH
- voda MeSH
- xylém mikrobiologie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH