Standardization of fertilization protocols is crucial for improving reproductive techniques for externally fertilizing fish in captive breeding. Therefore, the objectives of this study were to determine the effects of preincubation of eggs and activation medium on the percentage of eyed embryos for ide (Leuciscus idus). Pooled eggs from five females were preincubated in three different activating media for 0, 30, 60, 90, and 120 seconds and then fertilized by pooled sperm from five males. At the eyed-egg stage, the percentage of viable embryos was later calculated. Results showed that preincubation time was significant for the freshwater activation medium (P < 0.001), such that the percentage of eyed embryos declined across the preincubation time gradient. Additionally, there was an effect on the percentage of eyed embryos when eggs were incubated with Woynarovich solution (P < 0.001), such that a decline was detected at 90 seconds, whereas no effect was detected for the saline water medium. Activating medium had a significant effect on the percentage of eyed embryos for each preincubation time (P < 0.05). More precisely, freshwater produced the lowest percentage of eyed embryos at all preincubation times (ranged from 1.9% at 120 seconds to 43.6% at 0 seconds), whereas saline water and Woynarovich solution produced the highest percentage of eyed embryos at 0 seconds and 30 seconds before incubation. Woynarovich solution produced the highest percentage of eyed embryos at 60 seconds (65.26%), whereas saline water produced the highest percentage at 90 seconds (68.37%). No difference was detected between saline water and Woynarovich solution at 120 seconds. Examination of sperm traits showed no impact of activating medium on computer assisted sperm analysis parameters. Together, these results suggest that saline water or Woynarovich solution improve fertilization rate in ide during IVF; thus, these media are useful for standardizing fertilization protocols and controlled reproduction for this species.
- MeSH
- chov MeSH
- Cyprinidae * embryologie fyziologie MeSH
- embryo nesavčí MeSH
- fertilizace in vitro metody veterinární MeSH
- fertilizace účinky léků fyziologie MeSH
- kultivace embrya * metody veterinární MeSH
- kultivační média farmakologie MeSH
- oči účinky léků embryologie MeSH
- sexuální chování zvířat fyziologie MeSH
- spermie účinky léků fyziologie MeSH
- uchování spermatu veterinární MeSH
- zvířata MeSH
- zygota účinky léků MeSH
- Check Tag
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Polo-like kinase 1 (PLK1) is involved in essential events of cell cycle including mitosis in which it participates in centrosomal microtubule nucleation, spindle bipolarity establishment and cytokinesis. Although PLK1 function has been studied in cycling cancer cells, only limited data are known about its role in the first mitosis of mammalian zygotes. During the 1-cell stage of mouse embryo development, the acentriolar spindle is formed and the shift from acentriolar to centrosomal spindle formation progresses gradually throughout the preimplantation stage, thus providing a unique possibility to study acentriolar spindle formation. We have shown previously that PLK1 activity is not essential for entry into first mitosis, but is required for correct spindle formation and anaphase onset in 1-cell mouse embryos. In the present study, we extend this knowledge by employing quantitative confocal live cell imaging to determine spindle formation kinetics in the absence of PLK1 activity and answer the question whether metaphase arrest at PLK1-inhibited embryos is associated with low anaphase-promoting complex/cyclosome (APC/C) activity and consequently high securin level. We have shown that inhibition of PLK1 activity induces a delay in onset of acentriolar spindle formation during first mitosis. Although these PLK1-inhibited 1-cell embryos were finally able to form a bipolar spindle, not all chromosomes were aligned at the metaphase equator. PLK1-inhibited embryos were arrested in metaphase without any sign of APC/C activation with high securin levels. Our results document that PLK1 controls the onset of spindle assembly and spindle formation, and is essential for APC/C activation before anaphase onset in mouse zygotes.
- MeSH
- anafáze MeSH
- anafázi podporující komplex metabolismus MeSH
- aparát dělícího vřeténka metabolismus MeSH
- blastocysta MeSH
- časosběrné zobrazování MeSH
- centrozom metabolismus MeSH
- kinetika MeSH
- kinetochory metabolismus MeSH
- konfokální mikroskopie MeSH
- mitóza MeSH
- myši MeSH
- protein-serin-threoninkinasy antagonisté a inhibitory metabolismus MeSH
- proteiny buněčného cyklu antagonisté a inhibitory metabolismus MeSH
- protoonkogenní proteiny antagonisté a inhibitory metabolismus MeSH
- pteridiny farmakologie MeSH
- zvířata MeSH
- zygota účinky léků metabolismus MeSH
- Check Tag
- mužské pohlaví MeSH
- myši MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Aurora-A kinase (AURKA), a member of the serine/threonine protein kinase family, is involved in multiple steps of mitotic progression. It regulates centrosome maturation, mitotic spindle formation, and cytokinesis. While studied extensively in somatic cells, little information is known about AURKA in the early cleavage mouse embryo with respect to acentrosomal spindle assembly. In vitro experiments in which AURKA was inactivated with specific inhibitor MLN8237 during the early stages of embryogenesis documented gradual arrest in the cleavage ability of the mouse embryo. In the AURKA-inhibited 1-cell embryos, spindle formation and anaphase onset were delayed and chromosome segregation was defective. AURKA inhibition increased apoptosis during early embryonic development. In conclusion these data suggest that AURKA is essential for the correct chromosome segregation in the first mitosis as a prerequisite for normal later development after first cleavage.
- MeSH
- aurora kinasa A antagonisté a inhibitory metabolismus MeSH
- azepiny farmakologie MeSH
- časosběrné zobrazování MeSH
- fluorescenční mikroskopie MeSH
- fosforylace účinky léků MeSH
- inhibitory proteinkinas farmakologie MeSH
- konfokální mikroskopie MeSH
- kultivace embrya MeSH
- mitóza účinky léků fyziologie MeSH
- myši inbrední BALB C MeSH
- myši inbrední C57BL MeSH
- pyrimidiny farmakologie MeSH
- segregace chromozomů účinky léků fyziologie MeSH
- zvířata MeSH
- zygota účinky léků fyziologie MeSH
- Check Tag
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
OBJECTIVES: The aim of this study was to assess the toxicity of terbuthylazine in different developmental stages of common carp (Cyprinus carpio) on the basis of mortality, early ontogeny, occurrence of morphological anomalies, growth rate, and Fulton's condition factor during and at the conclusion of the test. DESIGN: The toxicity tests were performed on carp according to OECD 210 methodology. The developmental stages of carp were exposed to terbuthylazine at four concentrations, 2.9 (reported environmental concentration in Czech rivers); 70; 1,400; and 3,500 µg.L(-1) for 35 days and compared to carps in a non-treated control group. RESULTS: Terbuthylazine in concentration 1,400 and 3,000 µg.L(-1) caused significant (p<0.01) decrease of mass, total length and delayed in development of carp. Fish exposed to terbuthylazine showed alteration of tubular system of caudal kidney. On the basis of histopathological changes the values of LOEC=2.9 µg.L(-1) terbuthylazine were estimated. CONCLUSIONS: Chronic terbuthylazine exposure of early-life stages of common carp affected their growth rate, early ontogeny and histology. Some of the changes were observed only at higher exposures, but change founded in caudal kidney was affected in fish exposed to the real environmental concentration tested (i.e., 2.9 µg.L(-1)).
- MeSH
- chemické látky znečišťující vodu toxicita MeSH
- embryo nesavčí účinky léků MeSH
- kapři embryologie MeSH
- ledviny účinky léků embryologie MeSH
- pesticidy toxicita MeSH
- testy chronické toxicity MeSH
- triaziny toxicita MeSH
- zvířata MeSH
- zygota účinky léků MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH