Our and other studies suggest that myocardial hypertrophy in response to hypertension and hyperthyroidism increases propensity of the heart to malignant arrhythmias, while these are rare in conditions of hypothyroidism or type-1 diabetes mellitus associated with myocardial atrophy. One of the crucial factors impacting the susceptibility of the heart to life-threatening arrhythmias is gap junction channel protein connexin-43 (Cx43), which ensure cell-to-cell coupling for electrical signal propagation. Therefore, we aimed to explore Cx43 protein abundance and its topology in hypertrophic and hypotrophic cardiac phenotype. Analysis were performed in left ventricular tissue of adult male spontaneously hypertensive rat (SHR), Wistar Kyoto rats treated for 8-weeks with L-thyroxine, methimazol or strepotozotocin to induce hyperthyroid, hypothyroid and type-1 diabetic status as well as non-treated animals. Results showed that comparing to healthy rats there was a decrease of total myocardial Cx43 and its variant phosphorylated at serine368 in SHR and hyperthyroid rats. Besides, enhanced localization of Cx43 was demonstrated on lateral sides of hypertrophied cardiomyocytes. In contrast, total Cx43 protein and its serine368 variant were increased in atrophied left ventricle of hypothyroid and type-1 diabetic rats. It was associated with less pronounced alterations in Cx43 topology. In parallel, the abundance of PKCepsilon, which phosphorylates Cx43 at serine368 that stabilize Cx43 function and distribution was reduced in hypertrophied heart while enhanced in atrophied once. Findings suggest that differences in the abundance of cardiac Cx43, its variant phosphorylated at serine368 and Cx43 topology may explain, in part, distinct propensity of hypertrophied and atrophied heart to malignant arrhythmias.
- MeSH
- atrofie patologie MeSH
- diabetes mellitus 1. typu * metabolismus MeSH
- experimentální diabetes mellitus * metabolismus MeSH
- hypertrofie metabolismus MeSH
- hypertyreóza * komplikace metabolismus MeSH
- hypotyreóza * metabolismus MeSH
- konexin 43 metabolismus MeSH
- konexiny MeSH
- krysa rodu rattus MeSH
- myokard metabolismus MeSH
- pilotní projekty MeSH
- potkani inbrední SHR MeSH
- potkani inbrední WKY MeSH
- srdeční arytmie patologie MeSH
- zvířata MeSH
- Check Tag
- krysa rodu rattus MeSH
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Reactive oxygen species are an important element of redox regulation in cells and tissues. During physiological processes, molecules undergo chemical changes caused by reduction and oxidation reactions. Free radicals are involved in interactions with other molecules, leading to oxidative stress. Oxidative stress works two ways depending on the levels of oxidizing agents and products. Excessive action of oxidizing agents damages biomolecules, while a moderate physiological level of oxidative stress (oxidative eustress) is necessary to control life processes through redox signaling required for normal cellular operation. High levels of reactive oxygen species (ROS) mediate pathological changes. Oxidative stress helps to regulate cellular phenotypes in physiological and pathological conditions. Nrf2 (nuclear factor erythroid 2-related factor 2, NFE2L2) transcription factor functions as a target nuclear receptor against oxidative stress and is a key factor in redox regulation in hypertension and cardiovascular disease. Nrf2 mediates transcriptional regulation of a variety of target genes. The Keap1-Nrf2-ARE system regulates many detoxification and antioxidant enzymes in cells after the exposure to reactive oxygen species and electrophiles. Activation of Nrf2/ARE signaling is differentially regulated during acute and chronic stress. Keap1 normally maintains Nrf2 in the cytosol and stimulates its degradation through ubiquitination. During acute oxidative stress, oxidized molecules modify the interaction of Nrf2 and Keap1, when Nrf2 is released from the cytoplasm into the nucleus where it binds to the antioxidant response element (ARE). This triggers the expression of antioxidant and detoxification genes. The consequence of long-term chronic oxidative stress is activation of glycogen synthase kinase 3beta (GSK-3beta) inhibiting Nrf2 activity and function. PPARgamma (peroxisome proliferator-activated receptor gamma) is a nuclear receptor playing an important role in the management of cardiovascular diseases, hypertension and metabolic syndrome. PPARgamma targeting of genes with peroxisome proliferator response element (PPRE) has led to the identification of several genes involved in lipid metabolism or oxidative stress. PPARgamma stimulation is triggered by endogenous and exogenous ligands - agonists and it is involved in the activation of several cellular signaling pathways involved in oxidative stress response, such as the PI3K/Akt/NOS pathway. Nrf2 and PPARgamma are linked together with their several activators and Nrf2/ARE and PPARgamma/PPRE pathways can control several types of diseases.
- MeSH
- antioxidační responzivní elementy MeSH
- faktor 2 související s NF-E2 metabolismus MeSH
- hypertenze metabolismus patofyziologie MeSH
- kardiovaskulární nemoci metabolismus patofyziologie MeSH
- KEAP-1 metabolismus MeSH
- krevní tlak * MeSH
- lidé MeSH
- oxidační stres * MeSH
- PPAR gama metabolismus MeSH
- reaktivní formy kyslíku metabolismus MeSH
- signální transdukce MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Perinatal hypoxia is still one of the greatest threats to the newborn child, even in developed countries. However, there is a lack of works which summarize up-to-date information about that huge topic. Our review covers a broader spectrum of recent results from studies on mechanisms leading to hypoxia-induced injury. It also resumes possible primary causes and observed behavioral outcomes of perinatal hypoxia. In this review, we recognize two types of hypoxia, according to the localization of its primary cause: environmental and placental. Later we analyze possible pathways of prenatal hypoxia-induced injury including gene expression changes, glutaminergic excitatory damage (and a role of NMDA receptors in it), oxidative stress with ROS and RNS production, inflammation and apoptosis. Moreover, we focus on the impact of these pathophysiological changes on the structure and development of the brain, especially on its regions: corpus striatum and hippocampus. These brain changes of the offspring lead to impairments in their postnatal growth and sensorimotor development, and in their motor functions, activity, emotionality and learning ability in adulthood. Later we compare various animal models used to investigate the impact of prenatal and postnatal injury (hypoxic, ischemic or combinatory) on living organisms, and show their advantages and limitations.
- MeSH
- lidé MeSH
- mediátory zánětu metabolismus MeSH
- mozek růst a vývoj metabolismus MeSH
- mozková hypoxie metabolismus patologie MeSH
- novorozená zvířata MeSH
- novorozenec MeSH
- oxidační stres fyziologie MeSH
- receptory N-methyl-D-aspartátu metabolismus MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- novorozenec MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH