Vestibular schwannoma is the most common benign neoplasm of the cerebellopontine angle. Its first symptoms include hearing loss, tinnitus, and vestibular symptoms, followed by cerebellar and brainstem symptoms, along with palsy of the adjacent cranial nerves. However, the clinical picture has unpredictable dynamics and currently, there are no reliable predictors of tumor behavior. Hence, it is desirable to have a fast routine method for analysis of vestibular schwannoma tissues at the molecular level. The major objective of this study was to verify whether a technique using in-sample specific protein digestion with trypsin would have the potential to provide a proteomic characterization of these pathological tissues. The achieved results showed that the use of this approach with subsequent liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis of released peptides allowed a fast identification of a considerable number of proteins in two differential parts of vestibular schwannoma tissue as well as in tissues of control healthy samples. Furthermore, mathematical analysis of MS data was able to discriminate between pathological vestibular schwannoma tissues and healthy tissues. Thus, in-sample protein digestion combined with LC-MS/MS separation and identification of released specific peptides followed by mathematical analysis appears to have the potential for routine characterization of vestibular schwannomas at the molecular level. Data are available via ProteomeXchange with identifier PXD045261.
- MeSH
- chromatografie kapalinová metody MeSH
- lidé MeSH
- peptidové fragmenty * analýza chemie metabolismus MeSH
- peptidy metabolismus MeSH
- proteolýza MeSH
- proteomika metody MeSH
- tandemová hmotnostní spektrometrie metody MeSH
- trypsin chemie MeSH
- vestibulární schwannom * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
Cannabidiol (CBD) is the non-psychoactive component of the plant Cannabis sativa (L.) that has great anti-inflammatory benefits and wound healing effects. However, its high lipophilicity, chemical instability, and extensive metabolism impair its bioavailability and clinical use. Here, we report on the preparation of a human cornea substitute in vitro and validate this substitute for the evaluation of drug penetration. CBD nanoemulsion was developed and evaluated for stability and biological activity. The physicochemical properties of CBD nanoemulsion were maintained during storage for 90 days under room conditions. In the scratch assay, nanoformulation showed significantly ameliorated wound closure rates compared to the control and pure CBD. Due to the lower cytotoxicity of nanoformulated CBD, a higher anti-inflammatory activity was demonstrated. Neither nanoemulsion nor pure CBD can penetrate the cornea after the four-hour apical treatment. For nanoemulsion, 94 % of the initial amount of CBD remained in the apical compartment while only 54 % of the original amount of pure CBD was detected in the apical medium, and 7 % in the cornea, the rest was most likely metabolized. In summary, the nanoemulsion developed in this study enhanced the stability and biological activity of CBD.
- MeSH
- antiflogistika farmakologie MeSH
- biologická dostupnost MeSH
- hojení ran MeSH
- kanabidiol * chemie MeSH
- lidé MeSH
- rohovka MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
Vestibular schwannoma is the most common benign neoplasm of the cerebellopontine angle. It arises from Schwann cells of the vestibular nerve. The first symptoms of vestibular schwannoma include hearing loss, tinnitus, and vestibular symptoms. In the event of further growth, cerebellar and brainstem symptoms, along with palsy of the adjacent cranial nerves, may be present. Although hearing impairment is present in 95% of patients diagnosed with vestibular schwannoma, most tumors do not progress in size or have low growth rates. However, the clinical picture has unpredictable dynamics, and there are currently no reliable predictors of the tumor's behavior. The etiology of the hearing loss in patients with vestibular schwannoma is unclear. Given the presence of hearing loss in patients with non-growing tumors, a purely mechanistic approach is insufficient. A possible explanation for this may be that the function of the auditory system may be affected by the paracrine activity of the tumor. Moreover, initiation of the development and growth progression of vestibular schwannomas is not yet clearly understood. Biallelic loss of the NF2 gene does not explain the occurrence in all patients; therefore, detection of gene expression abnormalities in cases of progressive growth is required. As in other areas of cancer research, the tumor microenvironment is coming to the forefront, also in vestibular schwannomas. In the paradigm of the tumor microenvironment, the stroma of the tumor actively influences the tumor's behavior. However, research in the area of vestibular schwannomas is at an early stage. Thus, knowledge of the molecular mechanisms of tumorigenesis and interactions between cells present within the tumor is crucial for the diagnosis, prediction of tumor behavior, and targeted therapeutic interventions. In this review, we provide an overview of the current knowledge in the field of molecular biology and tumor microenvironment of vestibular schwannomas, as well as their relationship to tumor growth and hearing loss.
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
For the understanding of pathological states of bone tissues in oral surgery, it would be desirable to have the possibility to simulate these processes on bone cell models in vitro. These cultures, similarly to bone tissues, contain numerous proteins entrapped in the insoluble matrix. The major goal of this study was to verify whether a method based on direct in-matrix protein digestion could be suitable for the discrimination between different induced pathological states of bone cell models cultivated in vitro. Using in-sample specific protein digestion with trypsin followed by liquid chromatography-tandem mass spectrometry analysis of released peptides, 446 proteins (in average per sample) were identified in a bone cell in vitro model with induced cancer, 440 proteins were found in a model with induced inflammation, 451 proteins were detected in control in vitro culture, and 491 proteins were distinguished in samples of vestibular laminas of maxillary bone tissues originating from six different patients. Subsequent partial least squares - discrimination analysis of obtained liquid chromatography-tandem mass spectrometry data was able to discriminate among in vitro cultures with induced cancer, with induced inflammation, and control cultivation. Thus, the direct in-sample protein digestion by trypsin followed by liquid chromatography-tandem mass spectrometry analysis of released specific peptide fragments from the insoluble matrix and mathematical analysis of the mass spectrometry data seems to be a promising tool for the routine proteomic characterization of in vitro human bone models with induced different pathological states.
- MeSH
- chromatografie kapalinová metody MeSH
- lidé MeSH
- peptidy analýza MeSH
- proteiny chemie MeSH
- proteolýza MeSH
- proteomika metody MeSH
- stomatochirurgické výkony * MeSH
- tandemová hmotnostní spektrometrie * metody MeSH
- trypsin chemie MeSH
- zánět MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
The commonly used histological assessment of pathological states of alveolar bone tissues in oral surgery needs laborious and time-consuming processing by an experienced histologist. Therefore, a simpler and faster methodology is required in this field. Following this demand, this paper reports a straightforward approach using the tryptic cleavage of proteins directly in bone without its demineralization, followed by the capillary electrophoresis-ultraviolet detection profiling of the yielded protein digest. Cleavage-derived peptides were separated by capillary electrophoresis in acidic background electrolytes, pH 2.01-2.54. The best resolution of peptide fragments with the highest peak capacity was achieved in the background electrolyte composed of 55 mM H3 PO4 , 14 mM tris(hydroxymethyl)aminomethan, pH 2.01. The differences in the obtained capillary electrophoresis-ultraviolet detection profiles with characteristic patterns for particular bone samples were subsequently discriminated by linear discriminant analysis over principal components. This approach was first verified on porcine bone tissues as model samples; jawbone and calf bone tissues could be discriminated with an accuracy of 100%. Subsequently, the method was capable of differentiating unequivocally between human healthy and inflammatory alveolar bone tissues obtained from oral surgery. This procedure seems to be promising as complement or even an alternative to the traditional histological discrimination between healthy and inflammatory bone tissues in oral surgery.
Natural organic additives such as eggs, lard, resins, and oils have been added to mortars since ancient times, because the ancient builders knew of their positive effect on the mortar quality. The tradition of adding organic materials to mortars was commonly handed down only verbally for thousands years. However, this practice disappeared in the nineteenth century, when the usage of modern materials started. Today, one of the most recent topics in the industry of building materials is the reusing of natural organic materials and searching for the forgotten ancient recipes. The research of the old technological approaches involves currently the most advanced analytical techniques and methods. This paper is focussed on testing the possibility of identification of proteinaceous additives in historical mortars and model mortar samples containing blood, bone glue, curd, eggs and gelatine, by Fourier transform infrared (FTIR) and Raman spectroscopy, gas chromatography - mass spectrometry (GC-MS), matrix-assisted laser desorption/ionisation-time of flight mass spectrometry (MALDI-TOF MS), liquid chromatography-electrospray ionisation-quadrupole-time of flight mass spectrometry (LC-ESI-Q-TOF MS) and enzyme-linked immunosorbent assay (ELISA). All these methods were applied to the mortar sample taken from the interior of the medieval (sixteenth century) castle in Namest nad Oslavou in the Czech Republic and their comparison contributed to the rough estimation of the protein additive content in the mortar. The obtained results demonstrate that only LC-ESI-Q-TOF MS, MALDI-TOF MS and ELISA have the sufficiently low detection limits that enable the reliable identification of collagens in historical mortars. Graphical abstract Proteomics analyses of historical mortars.
- MeSH
- dějiny 16. století MeSH
- ELISA metody MeSH
- kolagen analýza MeSH
- konstrukční materiály analýza dějiny MeSH
- krevní proteiny analýza MeSH
- plynová chromatografie s hmotnostně spektrometrickou detekcí metody MeSH
- proteiny analýza MeSH
- Ramanova spektroskopie metody MeSH
- spektrometrie hmotnostní - ionizace laserem za účasti matrice metody MeSH
- spektroskopie infračervená s Fourierovou transformací metody MeSH
- vejce analýza MeSH
- želatina analýza MeSH
- zvířata MeSH
- Check Tag
- dějiny 16. století MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- historické články MeSH
- srovnávací studie MeSH
- Geografické názvy
- Česká republika MeSH
Fusarium head blight (FHB) disease adversely affects grain quality and final yield in small-grain cereals including barley. In the present study, the effect of an artificial infection with Fusarium culmorum and an application of deoxynivalenol (DON) on barley spikes of cultivars Chevron and Pedant during flowering was investigated at grain mid-dough stage (BBCH 73) 10days after pathogen inoculation (10 dai). Proteomic analysis using a two-dimensional differential gel electrophoresis (2D-DIGE) technique coupled with LC-MS/MS investigated 98 protein spots revealing quantitative or qualitative differences between the experimental variants. Protein functional annotation of 93 identified protein spots revealed that most affected functional groups represent storage proteins (globulins, hordeins), followed by proteins involved in carbohydrate metabolism (α-amylase inhibitor, β-amylase, glycolytic enzymes), amino acid metabolism (aminotransferases), defence response (chitinase, xylanase inhibitor, serpins, SGT1, universal stress protein USP), protein folding (chaperones, chaperonins), redox metabolism (ascorbate-glutathione cycle), and proteasome-dependent protein degradation. The obtained results indicate adverse effects of infection on plant proteome as well as an active plant response to pathogen as shown by enhanced levels of several inhibitors of pathogen-produced degradation enzymes (α-amylase inhibitor, xylanase inhibitor, serpins), chaperones, and other stress-related proteins (SGT1, USP). Genotypic differences were found in hordein abundance between Chevron and Pedant.
[Special aspects of mass spec]
Hmotnostní spektrometrie je neodmyslitelnou součástí moderní proteomiky. Při analýzách proteinů, ale i jiných biochemických molekul, nacházejí uplatnění různé typy hmotnostních spektrometrů. Článek se zabývá porovnáním hmotnostních spektrometrů na principu MALDI-TOF (Matrix Assisted Laser Desorption Ionisation–Time of Flight) a LC-Q LC-Q-TOF (Liquid Chromatography Quadrupole Time of Flight) z různých hledisek.
Mass spectrometry is inseparable part of modern proteomics. Different types of mass spectrometers are involved in analysis of proteins or the other biomolecules. The article compares mass spectrometers based on principles MALDI-TOF (Matrix Assisted Laser Desorption Ionisation–Time of Flight) and LC-Q LC-Q-TOF (Liquid Chromatography Quadrupole Time of Flight) from different point of views.
- MeSH
- chemické techniky analytické MeSH
- chromatografie micelární elektrokinetická kapilární * metody přístrojové vybavení využití MeSH
- metody pro přípravu analytických vzorků MeSH
- mezibuněčné signální peptidy a proteiny analýza klasifikace MeSH
- mikrobiologické techniky MeSH
- proteiny analýza klasifikace ultrastruktura MeSH
- proteomika * metody přístrojové vybavení MeSH
- software MeSH
- spektrometrie hmotnostní - ionizace laserem za účasti matrice * metody přístrojové vybavení využití MeSH
- Publikační typ
- práce podpořená grantem MeSH
This article proposes an innovative methodology which employs nondestructive techniques to assess the effectiveness of new formulations based on ionic liquids, as alternative solvents for enzymes (proteases), for the removal of proteinaceous materials from painted surfaces during restoration treatments. Ionic liquids (ILs), also known as "designer" solvents, because of their peculiar properties which can be adjusted by selecting different cation-anion combinations, are potentially green solvents due totheir low vapour pressure. In this study, two ionic liquids were selected: IL1 (1-butyl-3-methylimidazolium tetrafluoroborate ([BMIM][BF4 ])) and IL2 (1-ethyl-3-methylimidazolium ethylsulphate ([EMIM][EtSO4 ])). New formulations were prepared with these ILs and two different proteases (E): one acid (E1-pepsin) and one alkaline (E2-obtained from Aspergillus sojae). These formulations were tested on tempera and oil mock-up samples, prepared in accordance with historically documented recipes, and covered with two different types of protein-based varnishes (egg white and isinglass-fish glue). A noninvasive multiscale imaging methodology was applied before and after the treatment to evaluate the cleaning's effectiveness. Different microscopic techniques-optical microscopy (OM) with visible and fluorescent light, scanning electron microscopy (SEM) and atomic force microscopy (AFM)-together with Matrix-Assisted Laser Desorption/Ionization-Time of Flight Mass Spectrometry (MALDI-TOF MS) were applied on areas cleaned with the new formulations (IL + E) and reference areas cleaned only with the commercial enzyme formulations (gels). MALDI-TOF proved particularly very useful for comparing the diversity and abundance of peptides released by using different enzymatic systems. Microsc. Res. Tech. 77:574-585, 2014. © 2014 Wiley Periodicals, Inc.