Trypanosomatids (Euglenozoa) are a diverse group of unicellular flagellates predominately infecting insects (monoxenous species) or circulating between insects and vertebrates or plants (dixenous species). Monoxenous trypanosomatids harbor a wide range of RNA viruses belonging to the families Narnaviridae, Totiviridae, Qinviridae, Leishbuviridae, and a putative group of tombus-like viruses. Here, we focus on the subfamily Blastocrithidiinae, a previously unexplored divergent group of monoxenous trypanosomatids comprising two related genera: Obscuromonas and Blastocrithidia. Members of the genus Blastocrithidia employ a unique genetic code, in which all three stop codons are repurposed to encode amino acids, with TAA also used to terminate translation. Obscuromonas isolates studied here bear viruses of three families: Narnaviridae, Qinviridae, and Mitoviridae. The latter viral group is documented in trypanosomatid flagellates for the first time. While other known mitoviruses replicate in the mitochondria, those of trypanosomatids appear to reside in the cytoplasm. Although no RNA viruses were detected in Blastocrithidia spp., we identified an endogenous viral element in the genome of B. triatomae indicating its past encounter(s) with tombus-like viruses.
- Publikační typ
- časopisecké články MeSH
Tatra chamois (Rupicapra rupicapra tatrica (Blahout 1972)) and Tatra marmot (Marmota marmota latirostris (Kratochvíl 1961)) are significant endemic subspecies of the subalpine and alpine ranges of the Tatra Mountains in Central Europe. In four studied localities in the range of their typical biotopes in Slovakia and Poland, we investigated intestinal parasites of Tatra chamois and Tatra marmots, with an emphasis on anoplocephalid tapeworms. We also studied the occurrence, species diversity, and abundance of oribatid mites as intermediate hosts thereof, and the prevalence of cysticercoid larval stages of anoplocephalid tapeworms in collected oribatids using morphological and molecular methods. Coprological analyses revealed the average positivity of Moniezia spp. in chamois faeces at 23.5% and Ctenotaenia marmotae in marmot samples at 71.1%, with significant differences between the localities under study. Morphological analyses determined the presence of cysticercoids in five oribatid species: Ceratozetes gracilis, Edwardzetes edwardsi, Scheloribates laevigatus, Trichoribates novus, and Tectocepheus velatus sarekensis. This is the first record of T. v. sarekensis as an intermediate host of anoplocephalid tapeworms, as well as the first report of Andrya cuniculi occurrence in the territory of the Tatra Mountains, confirmed also by molecular methods.
- Publikační typ
- časopisecké články MeSH
Leishmaniasis is a complex human disease caused by intracellular parasites of the genus Leishmania, predominantly transmitted by the bite of sand flies. In Italy, leishmaniasis is caused exclusively by Leishmania infantum, responsible for the human and canine visceral leishmaniases (HVL and CVL, respectively). Within the Emilia-Romagna region, two different foci are active in the municipalities of Pianoro and Valsamoggia (both in the province of Bologna). Recent molecular studies indicated that L. infantum strains circulating in dogs and humans are different, suggesting that there is an animal reservoir other than dogs for human visceral leishmaniasis in the Emilia-Romagna region. In this work, we analyzed specimens from wild animals collected during hunts or surveillance of regional parks near active foci of human visceral leishmaniasis for L. infantum infection in the province of Bologna. Out of 70 individuals analyzed, 17 (24%) were positive for L. infantum. The infection prevalence in hedgehogs (Erinaceus europaeus), roe deer (Capreolus capreolus), badgers (Meles meles), and bank voles (Myodes glareolus) was 80, 33, 25, and 11%, respectively. To distinguish the two strains of L. infantum we have developed a nested PCR protocol optimized for animal tissues. Our results demonstrated that most (over 90%) of L. infantum infections in roe deer were due to the strain circulating in humans in the Emilia-Romagna region.
- MeSH
- Leishmania infantum * genetika MeSH
- leishmanióza viscerální * epidemiologie veterinární parazitologie MeSH
- leishmanióza * epidemiologie parazitologie MeSH
- lidé MeSH
- nemoci psů * epidemiologie parazitologie MeSH
- psi MeSH
- vysoká zvěř * MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- psi MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Leishmaniaviruses (LRVs) have been demonstrated to enhance progression of leishmaniasis, a vector-transmitted disease with a wide range of clinical manifestations that is caused by flagellates of the genus Leishmania. Here, we used two previously proposed strategies of the LRV ablation to shed light on the relationships of two Leishmania spp. with their respective viral species (L. guyanensis, LRV1 and L. major, LRV2) and demonstrated considerable difference between two studied systems. LRV1 could be easily eliminated by the expression of exogenous capsids regardless of their origin (the same or distantly related LRV1 strains, or even LRV2), while LRV2 was only partially depleted in the case of the native capsid overexpression. The striking differences were also observed in the effects of complete viral elimination with 2'C-methyladenosine (2-CMA) on the transcriptional profiles of these two Leishmania spp. While virtually no differentially expressed genes were detected after the LRV1 removal from L. guyanensis, the response of L. major after ablation of LRV2 involved 87 genes, the analysis of which suggested a considerable stress experienced even after several passages following the treatment. This effect on L. major was also reflected in a significant decrease of the proliferation rate, not documented in L. guyanensis and naturally virus-free strain of L. major. Our findings suggest that integration of L. major with LRV2 is deeper compared with that of L. guyanensis with LRV1. We presume this determines different effects of the viral presence on the Leishmania spp. infections. IMPORTANCELeishmania spp. represent human pathogens that cause leishmaniasis, a widespread parasitic disease with mild to fatal clinical manifestations. Some strains of leishmaniae bear leishmaniaviruses (LRVs), and this has been shown to aggravate disease course. We investigated the relationships of two distally related Leishmania spp. with their respective LRVs using different strategies of virus removal. Our results suggest the South American L. guyanensis easily loses its virus with no important consequences for the parasite in the laboratory culture. Conversely, the Old-World L. major is refractory to virus removal and experiences a prominent stress if this removal is nonetheless completed. The drastically different levels of integration between the studied Leishmania spp. and their viruses suggest distinct effects of the viral presence on infections in these species of parasites.
Most trypanosomatid flagellates do not have catalase. In the evolution of this group, the gene encoding catalase has been independently acquired at least three times from three different bacterial groups. Here, we demonstrate that the catalase of Vickermania was obtained by horizontal gene transfer from Gammaproteobacteria, extending the list of known bacterial sources of this gene. Comparative biochemical analyses revealed that the enzymes of V. ingenoplastis, Leptomonas pyrrhocoris, and Blastocrithidia sp., representing the three independent catalase-bearing trypanosomatid lineages, have similar properties, except for the unique cyanide resistance in the catalase of the latter species.
- Publikační typ
- časopisecké články MeSH
In this study, we characterized a collection of clinical samples obtained from Syrian and Turkish patients with cutaneous leishmaniasis using internal transcribed spacer 1 (ITS1) sequences. All obtained sequences belonged to Leishmania tropica. Combining them with those available from GenBank allowed us performing a broad-scale analysis of genetic diversity for this species. We demonstrated that L. tropica has a complex phylogeographic pattern with some haplotypes being widespread across endemic countries and others restricted to particular regions. We hypothesize that at least some of them may be associated with alternative vectors or animal reservoirs.
Here we describe the new trypanosomatid, Phytomonas borealis sp. n., from the midgut of the spiked shieldbugs, Picromerus bidens (Linnaeus), collected in two locations, Novgorod and Pskov Oblasts of Russia. The phylogenetic analyses, based on the 18S rRNA gene, demonstrated that this flagellate is a sister species to the secondary monoxenous Phytomonas nordicus Frolov et Malysheva, 1993, which was concurrently documented in the same host species in Pskov Oblast. Unlike P. nordicus, which can complete its development (including exit to haemolymph and penetration into salivary glands) in Picromerus bidens, the new species did not form any extraintestinal stages in the host. It also did not produce endomastigotes, indispensable for transmission in other Phytomonas spp. These observations, along with the fact that P. bidens overwinters at the egg stage, led us to the conclusion that the examined infections with P. borealis were non-specific. Strikingly, the flagellates from the Novgorod population contained prokaryotic endosymbionts, whereas the parasites from the second locality were endosymbiont-free. This is a first case documenting presence of intracellular symbiotic bacteria in Phytomonas spp. We suggest that this novel endosymbiotic association arose very recently and did not become obligate yet. Further investigation of P. borealis and its intracellular bacteria may shed light on the origin and early evolution of endosymbiosis in trypanosomatids.
- MeSH
- fylogeneze MeSH
- fyziologie bakterií * MeSH
- Heteroptera růst a vývoj parazitologie MeSH
- nymfa růst a vývoj parazitologie MeSH
- RNA protozoální analýza MeSH
- RNA ribozomální 18S analýza MeSH
- symbióza * MeSH
- Trypanosomatina klasifikace mikrobiologie MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Rusko MeSH
Protein phosphorylation/dephosphorylation is an important regulatory mechanism that controls many key physiological processes. Numerous pathogens successfully use kinases and phosphatases to internalize, replicate, and survive, modifying the host's phosphorylation profile or signal transduction pathways. Multiple phosphatases and kinases from diverse bacterial pathogens have been implicated in human infections before. In this work, we have identified and characterized the dual specificity protein/lipid phosphatase LmDUSP1 as a novel virulence factor governing Leishmania mexicana infection. The LmDUSP1-encoding gene (LmxM.22.0250 in L. mexicana) has been acquired from bacteria via horizontal gene transfer. Importantly, its orthologues have been associated with virulence in several bacterial species, such as Mycobacterium tuberculosis and Listeria monocytogenes. Leishmania mexicana with ablated LmxM.22.0250 demonstrated severely attenuated virulence in the experimental infection of primary mouse macrophages, suggesting that this gene facilitates Leishmania pathogenicity in vertebrates. Despite significant upregulation of LmxM.22.0250 expression in metacyclic promastigotes, its ablation did not affect the ability of mutant cells to differentiate into virulent stages in insects. It remains to be further investigated which specific biochemical pathways involve LmDUSP1 and how this facilitates the parasite's survival in the host. One of the interesting possibilities is that LmDUSP1 may target host's substrate(s), thereby affecting its signal transduction pathways.
- Publikační typ
- časopisecké články MeSH
The extreme biological diversity of Oceanian archipelagos has long stimulated research in ecology and evolution. However, parasitic protists in this geographic area remained neglected and no molecular analyses have been carried out to understand the evolutionary patterns and relationships with their hosts. Papua New Guinea (PNG) is a biodiversity hotspot containing over 5% of the world's biodiversity in less than 0.5% of the total land area. In the current work, we examined insect heteropteran hosts collected in PNG for the presence of trypanosomatid parasites. The diversity of insect flagellates was analysed, to our knowledge for the first time, east of Wallace's Line, one of the most distinct biogeographic boundaries of the world. Out of 907 investigated specimens from 138 species and 23 families of the true bugs collected in eight localities, 135 (15%) were infected by at least one trypanosomatid species. High species diversity of captured hosts correlated with high diversity of detected trypanosomatids. Of 46 trypanosomatid Typing Units documented in PNG, only eight were known from other geographic locations, while 38 TUs (~83%) have not been previously encountered. The widespread trypanosomatid TUs were found in both widely distributed and endemic/sub-endemic insects. Approximately one-third of the endemic trypanosomatid TUs were found in widely distributed hosts, while the remaining species were confined to endemic and sub-endemic insects. The TUs from PNG form clades with conspicuous host-parasite coevolutionary patterns, as well as those with a remarkable lack of this trait. In addition, our analysis revealed new members of the subfamilies Leishmaniinae and Strigomonadinae, potentially representing new genera of trypanosomatids.
- MeSH
- biodiverzita * MeSH
- biologická evoluce MeSH
- fylogeneze MeSH
- hmyz parazitologie MeSH
- interakce hostitele a parazita MeSH
- Trypanosomatina klasifikace genetika izolace a purifikace MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Papua Nová Guinea MeSH