Homologous recombination involves the formation of branched DNA molecules that may interfere with chromosome segregation. To resolve these persistent joint molecules, cells rely on the activation of structure-selective endonucleases (SSEs) during the late stages of the cell cycle. However, the premature activation of SSEs compromises genome integrity, due to untimely processing of replication and/or recombination intermediates. Here, we used a biochemical approach to show that the budding yeast SSEs Mus81 and Yen1 possess the ability to cleave the central recombination intermediate known as the displacement loop or D-loop. Moreover, we demonstrate that, consistently with previous genetic data, the simultaneous action of Mus81 and Yen1, followed by ligation, is sufficient to recreate the formation of a half-crossover precursor in vitro. Our results provide not only mechanistic explanation for the formation of a half-crossover, but also highlight the critical importance for precise regulation of these SSEs to prevent chromosomal rearrangements.
- MeSH
- crossing over (genetika) * MeSH
- DNA vazebné proteiny * metabolismus genetika MeSH
- endonukleasy * metabolismus genetika MeSH
- homologní rekombinace MeSH
- resolvasy Hollidayova spoje metabolismus genetika MeSH
- Saccharomyces cerevisiae - proteiny * metabolismus genetika MeSH
- Saccharomyces cerevisiae genetika metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
Meiotic defects derived from incorrect DNA repair during gametogenesis can lead to mutations, aneuploidies and infertility. The coordinated resolution of meiotic recombination intermediates is required for crossover formation, ultimately necessary for the accurate completion of both rounds of chromosome segregation. Numerous master kinases orchestrate the correct assembly and activity of the repair machinery. Although much less is known, the reversal of phosphorylation events in meiosis must also be key to coordinate the timing and functionality of repair enzymes. Cdc14 is a crucial phosphatase required for the dephosphorylation of multiple CDK1 targets in many eukaryotes. Mutations that inactivate this phosphatase lead to meiotic failure, but until now it was unknown if Cdc14 plays a direct role in meiotic recombination. Here, we show that the elimination of Cdc14 leads to severe defects in the processing and resolution of recombination intermediates, causing a drastic depletion in crossovers when other repair pathways are compromised. We also show that Cdc14 is required for the correct activity and localization of the Holliday Junction resolvase Yen1/GEN1. We reveal that Cdc14 regulates Yen1 activity from meiosis I onwards, and this function is essential for crossover resolution in the absence of other repair pathways. We also demonstrate that Cdc14 and Yen1 are required to safeguard sister chromatid segregation during the second meiotic division, a late action that is independent of the earlier role in crossover formation. Thus, this work uncovers previously undescribed functions of the evolutionary conserved Cdc14 phosphatase in the regulation of meiotic recombination.
- MeSH
- crossing over (genetika) genetika MeSH
- fosforylace genetika MeSH
- gametogeneze genetika MeSH
- homologní rekombinace genetika MeSH
- křížová struktura DNA genetika MeSH
- meióza genetika MeSH
- mutace genetika MeSH
- oprava DNA genetika MeSH
- proteinkinasa CDC2 genetika MeSH
- proteiny buněčného cyklu genetika MeSH
- resolvasy Hollidayova spoje genetika MeSH
- Saccharomyces cerevisiae - proteiny genetika MeSH
- Saccharomyces cerevisiae genetika MeSH
- segregace chromozomů genetika MeSH
- tyrosinfosfatasy genetika MeSH
- Publikační typ
- časopisecké články MeSH