Very long chain fatty acids (VLCFAs) are important components of various lipid classes in most organisms, from bacteria to higher plants and mammals, including humans. VLCFAs, or very long chain polyunsaturated fatty acids (VLCPUFAs), can be defined as fatty acids with 23 or more carbon atoms in the molecule. The main emphasis in this review is on the analysis of these acids, including obtaining standards from natural sources or their synthesis. Furthermore, the occurrence and analysis of these compounds in both lower (bacteria, invertebrates) and higher organisms (flowering plants or mammals) are discussed in detail. Attention is paid to their biosynthesis, especially the elongation of very long chain fatty acids protein (ELOVL4). This review deals with papers describing these very interesting compounds, whose chemical, biochemical and biological properties have not been fully explored.
Hormone-sensitive lipase (HSL) was initially characterized as the hormonally regulated neutral lipase activity responsible for the breakdown of triacylglycerols into fatty acids in adipose tissue. This review aims at providing up-to-date information on structural properties, regulation of expression, activity and function as well as therapeutic potential. The lipase is expressed as different isoforms produced from tissue-specific alternative promoters. All isoforms are composed of an N-terminal domain and a C-terminal catalytic domain within which a regulatory domain containing the phosphorylation sites is embedded. Some isoforms possess additional N-terminal regions. The catalytic domain shares similarities with bacteria, fungus and vascular plant proteins but not with other mammalian lipases. HSL singularity is provided by regulatory and N-terminal domains sharing no homology with other proteins. HSL has a broad substrate specificity compared to other neutral lipases. It hydrolyzes acylglycerols, cholesteryl and retinyl esters among other substrates. A novel role of HSL, independent of its enzymatic function, has recently been described in adipocytes. Clinical studies revealed dysregulations of HSL expression and activity in disorders, such as lipodystrophy, obesity, type 2 diabetes and cancer-associated cachexia. Development of specific inhibitors positions HSL as a pharmacological target for the treatment of metabolic complications.
Plasmalogens are a group of lipids mainly found in the cell membranes. They occur in anaerobic bacteria and in some protozoa, invertebrates and vertebrates, including humans. Their occurrence in plants and fungi is controversial. They can protect cells from damage by reactive oxygen species, protect other phospholipids or lipoprotein particles against oxidative stress, and have been implicated as signaling molecules and modulators of membrane dynamics. Biosynthesis in anaerobic and aerobic organisms occurs by different pathways, and the main biosynthetic pathway in anaerobic bacteria was clarified only this year (2021). Many different analytical techniques have been used for plasmalogen analysis, some of which are detailed below. These can be divided into two groups: shotgun lipidomics, or electrospray ionization mass spectrometry in combination with high performance liquid chromatography (LC-MS). The advantages and limitations of both techniques are discussed here, using examples from anaerobic bacteria to specialized mammalian (human) organs.
The discovery of branched fatty acid esters of hydroxy fatty acids (FAHFAs) in humans draw attention of many researches to their biological effects. Although FAHFAs were originally discovered in insects and plants, their introduction into the mammalian realm opened new horizons in bioactive lipid research. Hundreds of isomers from different families have been identified so far and their role in (patho) physiological processes is currently being explored. The family of palmitic acid esters of hydroxy stearic acids (PAHSAs), especially 5-PAHSA and 9-PAHSA regioisomers, stands out in the crowd of other FAHFAs for their anti-inflammatory and anti-diabetic effects. Beneficial effects of PAHSAs have been linked to metabolic disorders such as type 1 and type 2 diabetes, colitis, and chronic inflammation. Besides PAHSAs, a growing family of polyunsaturated FAHFAs exerts mainly immunomodulatory effects and biological roles of many other FAHFAs remain currently unknown. Therefore, FAHFAs represent unique lipid messengers capable of affecting many immunometabolic processes. The objective of this review is to summarize the knowledge concerning the diversity of FAHFAs, nomenclature, and their analysis and detection. Special attention is paid to the total syntheses of FAHFAs, optimal strategies, and to the formation of the stereocenter required for optically active molecules. Biosynthetic pathways of saturated and polyunsaturated FAHFAs in mammals and plants are reviewed together with their metabolism and degradation. Moreover, an overview of biological effects of branched FAHFAs is provided and many unanswered questions regarding FAHFAs are discussed.
- MeSH
- diabetes mellitus farmakoterapie metabolismus MeSH
- estery chemie metabolismus MeSH
- kolitida farmakoterapie metabolismus MeSH
- lidé MeSH
- mastné kyseliny chemie metabolismus MeSH
- molekulární struktura MeSH
- zánět farmakoterapie metabolismus MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
Ceramides, the principal building blocks of all sphingolipids, have attracted the attention of many scientists around the world interested in developing treatments for cystic fibrosis, the most common genetic disease of Caucasians. Many years of fruitful research in this field have produced some fundamentally important, yet controversial results. Here, we aimed to summarize the current knowledge on the role of long- and very-long- chain ceramides, the most abundant species of ceramides in animal cells, in cystic fibrosis and other diseases. We also aim to explain the importance of the length of their side chain in the context of stability of transmembrane proteins through a concise synthesis of their biophysical chemistry, cell biology, and physiology. This review also addresses several remaining riddles in this field. Finally, we discuss the technical challenges associated with the analysis and quantification of ceramides. We provide the evaluation of the antibodies used for ceramide quantification and we demonstrate their lack of specificity. Results and discussion presented here will be of interest to anyone studying these enigmatic lipids.
- MeSH
- bronchiální astma metabolismus MeSH
- ceramidy chemie metabolismus MeSH
- cystická fibróza metabolismus MeSH
- lidé MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
Phosphatidic acid (PA) is a simple phospholipid observed in most organisms. PA acts as a key metabolic intermediate and a second messenger that regulates many cell activities. In plants, PA is involved in numerous cell responses induced by hormones, stress inputs and developmental processes. Interestingly, PA production can be triggered by opposite stressors, such as cold and heat, or by hormones that are considered to be antagonistic, such as abscisic acid and salicylic acid. This property questions the specificity of the responses controlled by PA. Are there generic responses to PA, meaning that cell regulation triggered by PA would be always the same, even in opposite physiological situations? Alternatively, do the responses to PA differ according to the physiological context within the cells? If so, the mechanisms that regulate the divergence of PA-controlled reactions are poorly defined. This review summarizes the latest opinions on how PA signalling is directed in plant cells and examines the intrinsic properties of PA that enable its regulatory diversity. We propose a concept whereby PA regulatory messages are perceived as complex "signatures" that take into account their production site, the availability of target proteins and the relevant cellular environments.
- MeSH
- fyziologie rostlin * MeSH
- kyseliny fosfatidové chemie metabolismus MeSH
- molekulární struktura MeSH
- rostlinné proteiny genetika metabolismus MeSH
- rostliny chemie genetika metabolismus MeSH
- sekvence aminokyselin MeSH
- signální transdukce * MeSH
- vazba proteinů MeSH
- vazebná místa genetika MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
Very long chain fatty acids (FAs) are important components of different classes of lipids in all organisms from bacteria to man. They include also, usually as minor components, odd-numbered FAs. These have so far been given little attention because of technical difficulties inherent in their detection and identification. Current modern analytical methods such as GC-MS and/or LC-MS make this detection and identification possible, and should promote a study of their properties. This review brings, in a concise manner, most of the currently available information about these FAs, their occurrence in different organisms, their structure and other properties. It should provide an impetus for further research into these very interesting compounds whose chemical, biochemical and biological properties are poorly known.
- MeSH
- Bacteria chemie metabolismus MeSH
- houby chemie metabolismus MeSH
- kvasinky chemie metabolismus MeSH
- kyseliny dekanové analýza chemie metabolismus MeSH
- lidé MeSH
- mastné kyseliny analýza chemie klasifikace metabolismus MeSH
- plynová chromatografie s hmotnostně spektrometrickou detekcí metody MeSH
- rostliny chemie metabolismus MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH