- Autor
-
Pracoviště
Department of Biomedical Sciences University... 1 Department of Cell Biology Faculty of Scienc... 1 Department of Genetics and Microbiology Facu... 1 Department of Pediatrics and Inherited Disea... 1 Department of Physiology Faculty of Science ... 1 Laboratory for Study of Mitochondrial Disord... 1 Laboratory of Bioenergetics Institute of Phy... 1 Laboratory of Molecular Therapy Institute of... 1 School of Pharmacy and Medical Science Griff... 1 Veneto Institute of Molecular Medicine 35129... 1
- Publikační typ
- Kategorie
- Jazyk
- Země
- Časopis/zdroj
- Nejvíce citované
- Čunátová, Kristýna
- Vrbacký, Marek
- Puertas-Frias, Guillermo
- Alán, Lukáš
- Vanišová, Marie
- Saucedo-Rodríguez, María José
- Houštěk, Josef
- Fernández-Vizarra, Erika
-
Neužil, Jiří
Autor Neužil, Jiří School of Pharmacy and Medical Science, Griffith University, Southport, Qld 4222, Australia Laboratory of Molecular Therapy, Institute of Biotechnology, Czech Academy of Sciences, 25250 Prague, Czech Republic Department of Pediatrics and Inherited Diseases, First Faculty of Medicine, Charles University, 12108 Prague, Czech Republic Department of Physiology, Faculty of Science, Charles University, 12800 Prague, Czech Republic
- Pecinová, Alena
PubMed
39184436
PubMed Central
PMC11342289
DOI
10.1016/j.isci.2024.110560
PII: S2589-0042(24)01785-1
Knihovny.cz E-zdroje
Individual complexes of the mitochondrial oxidative phosphorylation system (OXPHOS) are not linked solely by their function; they also share dependencies at the maintenance/assembly level, where one complex depends on the presence of a different individual complex. Despite the relevance of this "interdependence" behavior for mitochondrial diseases, its true nature remains elusive. To understand the mechanism that can explain this phenomenon, we examined the consequences of the aberration of different OXPHOS complexes in human cells. We demonstrate here that the complete disruption of each of the OXPHOS complexes resulted in a decrease in the complex I (cI) level and that the major reason for this is linked to the downregulation of mitochondrial ribosomal proteins. We conclude that the secondary cI defect is due to mitochondrial protein synthesis attenuation, while the responsible signaling pathways could differ based on the origin of the OXPHOS defect.
- Klíčová slova
- Biochemistry, Cell biology, Molecular biology,
- Publikační typ
- časopisecké články MeSH
Sdílet
Název dokumentu
Po ukončení testovacího provozu bude odkaz přesměrován adresu produkční verze portálu Medvik.