In children with cancer, the heterogeneity in ototoxicity occurrence after similar treatment suggests a role for genetic susceptibility. Using a genome-wide association study (GWAS) approach, we identified a genetic variant in TCERG1L (rs893507) to be associated with hearing loss in 390 non-cranial irradiated, cisplatin-treated children with cancer. These results were replicated in two independent, similarly treated cohorts (n = 192 and 188, respectively) (combined cohort: P = 5.3 × 10-10, OR 3.11, 95% CI 2.2-4.5). Modulating TCERG1L expression in cultured human cells revealed significantly altered cellular responses to cisplatin-induced cytokine secretion and toxicity. These results contribute to insights into the genetic and pathophysiological basis of cisplatin-induced ototoxicity.
- Publikační typ
- časopisecké články MeSH
PURPOSE: Proline Rich 12 (PRR12) is a gene of unknown function with suspected DNA-binding activity, expressed in developing mice and human brains. Predicted loss-of-function variants in this gene are extremely rare, indicating high intolerance of haploinsufficiency. METHODS: Three individuals with intellectual disability and iris anomalies and truncating de novo PRR12 variants were described previously. We add 21 individuals with similar PRR12 variants identified via matchmaking platforms, bringing the total number to 24. RESULTS: We observed 12 frameshift, 6 nonsense, 1 splice-site, and 2 missense variants and one patient with a gross deletion involving PRR12. Three individuals had additional genetic findings, possibly confounding the phenotype. All patients had developmental impairment. Variable structural eye defects were observed in 12/24 individuals (50%) including anophthalmia, microphthalmia, colobomas, optic nerve and iris abnormalities. Additional common features included hypotonia (61%), heart defects (52%), growth failure (54%), and kidney anomalies (35%). PrediXcan analysis showed that phecodes most strongly associated with reduced predicted PRR12 expression were enriched for eye- (7/30) and kidney- (4/30) phenotypes, such as wet macular degeneration and chronic kidney disease. CONCLUSION: These findings support PRR12 haploinsufficiency as a cause for a novel disorder with a wide clinical spectrum marked chiefly by neurodevelopmental and eye abnormalities.
- MeSH
- fenotyp MeSH
- haploinsuficience * genetika MeSH
- lidé MeSH
- mentální retardace * genetika MeSH
- missense mutace MeSH
- myši MeSH
- svalová hypotonie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH