- Autor
-
Pracoviště
ALBA Synchrotron Light Source E 08290 Cerdan... 1 Advanced Light Source Lawrence Berkeley Labo... 1 Chemical Sciences Division Lawrence Berkeley... 1 Department of Physics and Astronomy Universi... 1 Department of Physics and Electronics Gradua... 1 European Synchrotron Radiation Facility BP 2... 1 Helmholtz Zentrum Berlin Bessy 2 D 12489 Ber... 1 Institute for Advanced Studies Technische Un... 1 Institute for Solid State Physics TU Wien 10... 1 Institute for Solid State and Materials Phys... 1 Institute of Physics 2 University of Cologne... 1 Institute of Physics of the CAS Cukrovarnick... 1 Laboratory for Neutron and Muon Instrumentat... 1 Los Alamos National Laboratory Los Alamos NM... 1 Max Planck Institute for Chemical Physics of... 1 Oak Ridge National Laboratory Oak Ridge TN 3... 1 Physik Department Technische Universität Mün... 1 Physik Institut Universität Zürich Winterthu... 1 Stanford Synchrotron Radiation Lightsource S... 1
- Publikační typ
- Kategorie
- Jazyk
- Země
- Časopis/zdroj
- Grantová podpora
- Nejvíce citované
PubMed
36253344
PubMed Central
PMC9576770
DOI
10.1038/s41467-022-33468-6
PII: 10.1038/s41467-022-33468-6
Knihovny.cz E-zdroje
Effective models focused on pertinent low-energy degrees of freedom have substantially contributed to our qualitative understanding of quantum materials. An iconic example, the Kondo model, was key to demonstrating that the rich phase diagrams of correlated metals originate from the interplay of localized and itinerant electrons. Modern electronic structure calculations suggest that to achieve quantitative material-specific models, accurate consideration of the crystal field and spin-orbit interactions is imperative. This poses the question of how local high-energy degrees of freedom become incorporated into a collective electronic state. Here, we use resonant inelastic x-ray scattering (RIXS) on CePd3 to clarify the fate of all relevant energy scales. We find that even spin-orbit excited states acquire pronounced momentum-dependence at low temperature-the telltale sign of hybridization with the underlying metallic state. Our results demonstrate how localized electronic degrees of freedom endow correlated metals with new properties, which is critical for a microscopic understanding of superconducting, electronic nematic, and topological states.
- Publikační typ
- časopisecké články MeSH
Upřesnit dle MeSH
Sdílet
Název dokumentu
Po ukončení testovacího provozu bude odkaz přesměrován adresu produkční verze portálu Medvik.