Although machine learning (ML) has shown promise across disciplines, out-of-sample generalizability is concerning. This is currently addressed by sharing multi-site data, but such centralization is challenging/infeasible to scale due to various limitations. Federated ML (FL) provides an alternative paradigm for accurate and generalizable ML, by only sharing numerical model updates. Here we present the largest FL study to-date, involving data from 71 sites across 6 continents, to generate an automatic tumor boundary detector for the rare disease of glioblastoma, reporting the largest such dataset in the literature (n = 6, 314). We demonstrate a 33% delineation improvement for the surgically targetable tumor, and 23% for the complete tumor extent, over a publicly trained model. We anticipate our study to: 1) enable more healthcare studies informed by large diverse data, ensuring meaningful results for rare diseases and underrepresented populations, 2) facilitate further analyses for glioblastoma by releasing our consensus model, and 3) demonstrate the FL effectiveness at such scale and task-complexity as a paradigm shift for multi-site collaborations, alleviating the need for data-sharing.
- MeSH
- big data * MeSH
- glioblastom * MeSH
- lidé MeSH
- šíření informací MeSH
- strojové učení MeSH
- vzácné nemoci MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Research Support, N.I.H., Extramural MeSH
BACKGROUND: Despite a significant number of studies on female fertility following childhood, adolescent, and young adult (CAYA) cancer, studies establishing precise (dose-related) estimates of treatment-related risks are still scarce. Previous studies have been underpowered, did not include detailed treatment information, or were based on self-report only without any hormonal assessments. More precise assessments of who is at risk for sub- or infertility are needed. OBJECTIVE: The objective of our study is to describe the design and methods of 2 studies on female fertility (a cohort study and a nested case-control study) among female survivors of CAYA cancer performed within the European PanCareLIFE project. METHODS: For the cohort study, which aims to evaluate the overall risk of fertility impairment, as well as the risk for specific subgroups of female CAYA cancer survivors, 13 institutions from 9 countries provide data on fertility impairment. Survivors are defined as being fertility impaired if they meet at least one of 8 different criteria based on self-reported and hormonal data. For the nested case-control study, which aims to identify specific treatment-related risk factors associated with fertility impairment in addition to possible dose-response relationships, cases (fertility impaired survivors) are selected from the cohort study and matched to controls (survivors without fertility impairment) on a 1:2 basis. RESULTS: Of the 10,964 survivors invited for the cohort study, data are available from 6619 survivors, either questionnaire-based only (n=4979), hormonal-based only (n=72), or both (n=1568). For the nested case-control study, a total of 450 cases and 882 controls are identified. CONCLUSIONS: Results of both PanCareLIFE fertility studies will provide detailed insight into the risk of fertility impairment following CAYA cancer and diagnostic- or treatment-related factors associated with an increased risk. This will help clinicians to adequately counsel both girls and young women, who are about to start anticancer treatment, as well as adult female CAYA cancer survivors, concerning future parenthood and to timely refer them for fertility preservation. Ultimately, we aim to empower patients and survivors and improve their quality of life. REGISTERED REPORT IDENTIFIER: RR1-10.2196/10824.
- Klíčová slova
- case-control study, childhood cancer, cohort study, female, fertility, late effects,
- Publikační typ
- časopisecké články MeSH
BACKGROUND: The poly(ADP-ribose) polymerase inhibitor olaparib has shown antitumour activity in patients with platinum-sensitive, recurrent, high-grade serous ovarian cancer with or without BRCA1 or BRCA2 mutations. The aim of this study was to assess the efficacy and tolerability of olaparib in combination with chemotherapy, followed by olaparib maintenance monotherapy, versus chemotherapy alone in patients with platinum-sensitive, recurrent, high-grade serous ovarian cancer. METHODS: In this randomised, open-label, phase 2 study, adult patients with platinum-sensitive, recurrent, high-grade serous ovarian cancer who had received up to three previous courses of platinum-based chemotherapy and who were progression free for at least 6 months before randomisation received either olaparib (200 mg capsules twice daily, administered orally on days 1-10 of each 21-day cycle) plus paclitaxel (175 mg/m(2), administered intravenously on day 1) and carboplatin (area under the curve [AUC] 4 mg/mL per min, according to the Calvert formula, administered intravenously on day 1), then olaparib monotherapy (400 mg capsules twice daily, given continuously) until progression (the olaparib plus chemotherapy group), or paclitaxel (175 mg/m(2) on day 1) and carboplatin (AUC 6 mg/mL per min on day 1) then no further treatment (the chemotherapy alone group). Randomisation was done by an interactive voice response system, stratified by number of previous platinum-containing regimens received and time to disease progression after the previous platinum regimen. The primary endpoint was progression-free survival according to Response Evaluation Criteria in Solid Tumors version 1.1, analysed by intention to treat. Prespecified exploratory analyses included efficacy by BRCA mutation status, assessed retrospectively. This study is registered with ClinicalTrials.gov, number NCT01081951, and has been completed. FINDINGS: Between Feb 12 and July 30, 2010, 173 patients at 43 investigational sites in 12 countries were enrolled into the study, of whom 162 were eligible and were randomly assigned to the two treatment groups (81 to the olaparib plus chemotherapy group and 81 to the chemotherapy alone group). Of these randomised patients, 156 were treated in the combination phase (81 in the olaparib plus chemotherapy group and 75 in the chemotherapy alone group) and 121 continued to the maintenance or no further treatment phase (66 in the olaparib plus chemotherapy group and 55 in the chemotherapy alone group). BRCA mutation status was known for 107 patients (either at baseline or determined retrospectively): 41 (38%) of 107 had a BRCA mutation (20 in the olaparib plus chemotherapy group and 21 in the chemotherapy alone group). Progression-free survival was significantly longer in the olaparib plus chemotherapy group (median 12.2 months [95% CI 9.7-15.0]) than in the chemotherapy alone group (median 9.6 months [95% CI 9.1-9.7) (HR 0.51 [95% CI 0.34-0.77]; p=0.0012), especially in patients with BRCA mutations (HR 0.21 [0.08-0.55]; p=0.0015). In the combination phase, adverse events that were reported at least 10% more frequently with olaparib plus chemotherapy than with chemotherapy alone were alopecia (60 [74%] of 81 vs 44 [59%] of 75), nausea (56 [69%] vs 43 [57%]), neutropenia (40 [49%] vs 29 [39%]), diarrhoea (34 [42%] vs 20 [27%]), headache (27 [33%] vs seven [9%]), peripheral neuropathy (25 [31%] vs 14 [19%]), and dyspepsia (21 [26%] vs 9 [12%]); most were of mild-to-moderate intensity. The most common grade 3 or higher adverse events during the combination phase were neutropenia (in 35 [43%] of 81 patients in the olaparib plus chemotherapy group vs 26 [35%] of 75 in the chemotherapy alone group) and anaemia (seven [9%] vs five [7%]). Serious adverse events were reported in 12 (15%) of 81 patients in the olaparib plus chemotherapy group and 16 of 75 (21%) patients in the chemotherapy alone group. INTERPRETATION: Olaparib plus paclitaxel and carboplatin followed by maintenance monotherapy significantly improved progression-free survival versus paclitaxel plus carboplatin alone, with the greatest clinical benefit in BRCA-mutated patients, and had an acceptable and manageable tolerability profile. FUNDING: AstraZeneca.
- MeSH
- aplikace orální MeSH
- časové faktory MeSH
- cílená molekulární terapie MeSH
- dospělí MeSH
- ftalaziny aplikace a dávkování škodlivé účinky MeSH
- inhibitory enzymů aplikace a dávkování škodlivé účinky MeSH
- intravenózní podání MeSH
- karboplatina aplikace a dávkování MeSH
- lidé středního věku MeSH
- lidé MeSH
- lokální recidiva nádoru * MeSH
- mladý dospělý MeSH
- mutace MeSH
- nádory cystické, mucinózní a serózní farmakoterapie enzymologie mortalita patologie MeSH
- nádory vaječníků farmakoterapie enzymologie genetika mortalita patologie MeSH
- paclitaxel aplikace a dávkování MeSH
- PARP inhibitory * MeSH
- piperaziny aplikace a dávkování škodlivé účinky MeSH
- poly(ADP-ribosa)polymerasy metabolismus MeSH
- přežití bez známek nemoci MeSH
- protein BRCA1 genetika MeSH
- protein BRCA2 genetika MeSH
- protinádorové látky aplikace a dávkování škodlivé účinky MeSH
- protokoly protinádorové kombinované chemoterapie škodlivé účinky terapeutické užití MeSH
- rozvrh dávkování léků MeSH
- senioři MeSH
- stupeň nádoru MeSH
- výsledek terapie MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladý dospělý MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- klinické zkoušky, fáze II MeSH
- multicentrická studie MeSH
- práce podpořená grantem MeSH
- randomizované kontrolované studie MeSH
- srovnávací studie MeSH
- Názvy látek
- BRCA1 protein, human MeSH Prohlížeč
- BRCA2 protein, human MeSH Prohlížeč
- ftalaziny MeSH
- inhibitory enzymů MeSH
- karboplatina MeSH
- olaparib MeSH Prohlížeč
- paclitaxel MeSH
- PARP inhibitory * MeSH
- piperaziny MeSH
- poly(ADP-ribosa)polymerasy MeSH
- protein BRCA1 MeSH
- protein BRCA2 MeSH
- protinádorové látky MeSH