Products of lipid peroxidation induce detrimental structural changes in cell membranes, such as the formation of water pores, which occur in the presence of lipids with partially oxidized chains. However, the influence of another class of products, dicarboxylic acids, is still unclear. These products have greater mobility in the lipid bilayer, which enables their aggregation and the formation of favorable sites for the appearance of pores. Therefore, dodecanedioic acid (DDA) was selected as a model product. Additionally, the influence of several structurally different flavonoids on DDA aggregation via formation of hydrogen bonds with carboxyl groups was investigated. The molecular dynamics of DDA in DOPC lipid bilayer revealed the formation of aggregates extending over the hydrophobic region of the bilayer and increasing its polarity. Consequently, water penetration and the appearance of water wires was observed, representing a new step in the mechanism of pore formation. Furthermore, DDA molecules were found to interact with lipid polar groups, causing them to be buried in the bilayer. The addition of flavonoids to the system disrupted aggregate formation, resulting in the displacement of DDA molecules from the center of the bilayer. The placement of DDA and flavonoids in the lipid bilayer was confirmed by small-angle X-ray scattering. Atomic force microscopy and electron paramagnetic resonance were used to characterize the structural properties. The presence of DDA increased bilayer roughness and decreased the ordering of lipid chains, confirming its detrimental effects on the membrane surface, while flavonoids were found to reduce or reverse these changes.
- Klíčová slova
- antioxidant, dicarboxylic acid, flavone, flavonol, lipid/peroxidation, oxidized lipid, phospholipid/phosphatidylcholine, physical biochemistry,
- Publikační typ
- časopisecké články MeSH
The structural integrity, elasticity, and fluidity of lipid membranes are critical for cellular activities such as communication between cells, exocytosis, and endocytosis. Unsaturated lipids, the main components of biological membranes, are particularly susceptible to the oxidative attack of reactive oxygen species. The peroxidation of unsaturated lipids, in our case 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC), induces the structural reorganization of the membrane. We have employed a multi-technique approach to analyze typical properties of lipid bilayers, i.e., roughness, thickness, elasticity, and fluidity. We compared the alteration of the membrane properties upon initiated lipid peroxidation and examined the ability of flavonols, namely quercetin (QUE), myricetin (MCE), and myricitrin (MCI) at different molar fractions, to inhibit this change. Using Mass Spectrometry (MS) and Fourier Transform Infrared Spectroscopy (FTIR), we identified various carbonyl products and examined the extent of the reaction. From Atomic Force Microscopy (AFM), Force Spectroscopy (FS), Small Angle X-Ray Scattering (SAXS), and Electron Paramagnetic Resonance (EPR) experiments, we concluded that the membranes with inserted flavonols exhibit resistance against the structural changes induced by the oxidative attack, which is a finding with multiple biological implications. Our approach reveals the interplay between the flavonol molecular structure and the crucial membrane properties under oxidative attack and provides insight into the pathophysiology of cellular oxidative injury.
- Klíčová slova
- bilayer thickness, elasticity, flavonols, fluidity, lipid peroxidation, myricetin, myricitrin, quercetin,
- Publikační typ
- časopisecké články MeSH