ABSTRACT: The global market for fuel pellets (FPs) has been steadily growing because of a shift to coal substitutes. However, sustainability and the availability of biomass are the main issues. Various kinds of bio-wastes can be valorized through cutting-edge technologies. In the coffee industry, a valuable organic waste called spent coffee grounds (SCGs) is generated in bulk. SCG can be divided into two components, namely spent coffee ground oil and defatted spent coffee grounds (DSCG). SCG and DSCG can be used to produce FPs with excellent higher heating values. This review highlights that burning FPs composed of 100% SCG is not feasible due to the high emission of NOx. Moreover, the combustion is accompanied by a rapid temperature drop due to incomplete combustion which leads to lower boiler combustion efficiencies and increased carbon monoxide emissions. This was because of the low pellet strength and bulk density of the FP. Mixing SCG with other biomass offers improved boiler efficiency and emissions. Some of the reported optimized FPs include 75% SCG + 20% coffee silverskin, 30% SCG + 70% pine sawdust, 90% SCG + 10% crude glycerol, 32% SCG + 23% coal fines + 11% sawdust + 18% mielie husks + 10% waste paper + 6% paper pulp, and 50% SCG + 50% pine sawdust. This review noted the absence of combustion and emissions analyses of DSCG and the need for their future assessment. Valorization of DSCG offers a good pathway to improve the economics of an SCG-based biorefinery where the extracted SCGO can be valorized in other applications. The combustion and emissions of DSCG were not previously reported in detail. Therefore, future investigation of DSCG in boilers is essential to assess the potential of this industry and improve its economics. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s10668-022-02361-z.
Coffee is a globally consumed beverage that produces a substantial amount of valuable organic waste known as spent coffee grounds (SCG). Although SCG is a non-edible biomass, research initiatives focused on valorizing/utilizing its organic content, protecting the environment, and reducing the high oxygen demand required for its natural degradation. The integration with biorefinery in general and with pyrolysis process in specific is considerered the most successful solid waste management strategy of SCG that produce energy and high-value products. This paper aims at providing a quantitative analysis and discussion of research work done over the last 20 years on SCG as a feedstock in the circular bioeconomy (CBE). Management stratigies of SCG have been thoroughly reviewed and pyrolysis process has been explored as a novel technology in CBE. Results revealed that explored articles belong to Chemical, physical., biological and environmental science branches, with Energy & Fuels as the most reporting themes. Published works correlate SCG to renewable energy, biofuel, and bio-oil, with pyrolysis as a potential valorization approach. Literature review showed that only one study focused on the pyrolysis of defatted spent coffee grounds (DSCG). The insightful conclusions of this paper could assist in proposing several paths to more economically valorization of SCG through biorefinery, where extracted oil can be converted to biofuels or value-added goods. It was highlighted the importance of focusing on the coupling of SCG with CBE as solid waste managment strategy.
- Klíčová slova
- Bio-oil, Biochar, Biorefinery, Pyrolysis, Valorization of SCG,
- MeSH
- biopaliva MeSH
- káva * MeSH
- nakládání s odpady * MeSH
- pyrolýza MeSH
- tuhý odpad MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- biopaliva MeSH
- káva * MeSH
- tuhý odpad MeSH