Bio-oil Dotaz Zobrazit nápovědu
In this study, the synthesis of a Michael donor compound from cellulose production by-products-tall oil fatty acids-was developed. The developed Michael donor compounds can be further used to obtain polymeric materials after nucleophilic polymerization through the Michael reaction. It can be a promising alternative method for conventional polyurethane materials, and the Michael addition polymerization reaction takes place under milder conditions than non-isocyanate polyurethane production technology, which requires high pressure, high temperature and a long reaction time. Different polyols, the precursors for Michael donor components, were synthesized from epoxidized tall oil fatty acids by an oxirane ring-opening and esterification reaction with different alcohols (trimethylolpropane and 1,4-butanediol). The addition of functional groups necessary for the Michael reaction was carried out by a transesterification reaction of polyol hydroxyl groups with tert-butyl acetoacetate ester. The following properties of the developed polyols and their acetoacetates were analyzed: hydroxyl value, acid value, moisture content and viscosity. The chemical structure was analyzed using Fourier transform infrared spectroscopy, gel permeation chromatography, size-exclusion chromatography and nuclear magnetic resonance. Matrix-assisted laser desorption/ionization analysis was used for structure identification for this type of acetoacetate for the first time.
- Klíčová slova
- Michael addition components, Michael donor, bio-based acetoacetate, tall oil fatty acids,
- Publikační typ
- časopisecké články MeSH
To cope with the global climate crisis and assist in achieving the carbon neutrality, the use of biomass materials to fully or partially replace petroleum-based products and unrenewable resources is expected to become a widespread solution. Based on the analysis of the existing literature, this paper firstly classified biomass materials with potential application prospects in pavement engineering according to their application and summarized their respective preparation methods and characteristics. The pavement performance of asphalt mixtures with biomass materials was analyzed and summarized, and the economic and environmental benefits of bio-asphalt binder were evaluated. The analysis shows that pavement biomass materials with potential for practical application can be divided into three categories: bio-oil, bio-fiber, and bio-filler. Adding bio-oil to modify or extend the virgin asphalt binder can mostly improve the low temperature performance of asphalt binder. Adding styrene-butadienestyrene (SBS) or other preferable bio-components for composite modification will have a further improved effect. Most of the asphalt mixtures prepared by using bio-oil modified asphalt binders have improved the low temperature crack resistance and fatigue resistance of asphalt mixtures, but the high temperature stability and moisture resistance may decrease. As a rejuvenator, most bio-oils can restore the high and low temperature performance of aged asphalt and recycled asphalt mixture, and improve fatigue resistance. Adding bio-fiber could significantly improve the high temperature stability, low temperature crack resistance and moisture resistance of asphalt mixtures. Biochar as a bio-filler can slow down the asphalt aging process and some other bio-fillers can improve the high temperature stability and fatigue resistance of asphalt binders. Through calculation, it is found that the cost performance of bio-asphalt has the ability to surpass conventional asphalt and has economic benefits. The use of biomass materials for pavements not only reduces pollutants, but also reduces the dependence on petroleum-based products. It has significant environmental benefits and development potential.
- Klíčová slova
- Asphalt pavement, Bio-fiber, Bio-filler, Bio-oil, Biomass material,
- MeSH
- biomasa MeSH
- ropa * MeSH
- uhlovodíky * MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- asphalt MeSH Prohlížeč
- Bio-Oil MeSH Prohlížeč
- ropa * MeSH
- uhlovodíky * MeSH
The history of plants to be utilized as medicines is thousands of years old. Black cumin is one of the most widely examined plant possessing naturally occurring compounds with antimicrobial potential. Foliar application of growth stimulators is a successful strategy to enhance yield and quality in many crops. A field study was planned to apply growth stimulator like moringa leaf extract on black cumin crop grown under field conditions using RCB design with three replications. All other agronomic inputs and practices were uniform. The treatments were moringa leaf extract concentrations (10%, 20%), growth stages (40 days after sowing, 80 DAS, 120 DAS, 40 + 80 DAS, 40 + 120 DAS, 80 + 120 DAS, 40 + 80 + 120 days after sowing) and two controls unsprayed check (i.e. no moringa leaf extract, no water) and sprayed check (no moringa leaf extract + water). Application of 20% moringa leaf extract at stage-7 (40 + 80 + 120 days after sowing) had significantly increased plant height, branches plant-1, essential oil content, fixed oil content, peroxidase value and iodine value of black cumin oil over unsprayed control. Application of moringa leaf extract showed maximum results and improves growth and yield of black cumin when applied at 40 + 80 + 120 days after sowing. As this study was only conducted using moringa leaf extract, it is advisable to conduct an experiment with various bio stimulants along with fertilizer combinations and growth regulators to check their synergistic effects for more reliable and acceptable recommendations in future.
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Methacrylated vegetable oils are promising bio-based polymerizable precursors for potential material application in several fields, such as coating technologies or 3D printing. The reactants' availability for their production is an enormous advantage, but the modified oils also exhibit high apparent viscosity values and poor mechanical properties. This work focuses on a way to produce oil-based polymerizable material precursors in a mixture with a viscosity modifier in a one-batch process. The required methacrylic acid for the modification of epoxidized vegetable oils can be obtained as a secondary product of the methacrylation of methyl lactate forming a polymerizable monomer along with the acid. This reaction results in a yield of over 98% of methacrylic acid. Epoxidized vegetable oil can be added into the same batch using acid for oil modification which results in the one-pot mixture of both methacrylated oil and methyl lactate. The structural verifications of products were provided via FT-IR, 1H NMR, and volumetric methods. This two-step reaction process produces a thermoset mixture with a lower apparent viscosity of 142.6 mPa·s in comparison with methacrylated oil exhibiting a value of 1790.2 mPa·s. Other physical-chemical properties of the resin mixture such as storage modulus (E' = 1260 MPa), glass transition temperature (Tg = 50.0 °C), or polymerization activation energy (17.3 kJ/mol) are enhanced in comparison with the methacrylated vegetable oil. The synthesized one-pot mixture does not require additional methacrylic acid due to the use of the one formed in the first step of the reaction, while the eventual thermoset mixture exhibits enhanced material properties compared to the methacrylated vegetable oil itself. Precursors synthesized in this work may find their purpose in the field of coating technologies, since these applications require detailed viscosity modifications.
- Klíčová slova
- methacrylated methyl lactate, modified lactate, polymerizable precursors, resin, thermoset mixture, viscosity modification,
- Publikační typ
- časopisecké články MeSH
'Gouda cheese' is one of the most popular varieties of cheese eaten worldwide. The preservation problem of gouda arises due to microbial contamination and infestation. Therefore, essential oil (EO) based PVP-CMC-BC-GG hydrogel film was prepared to solve the problem and to extend the shelf-life of 'Gouda cheese'. Anthocyanin (isolated from red cabbage) based pH stickers are integrated into the packaging system to recognize the spoilage of 'cheese'. EOs (clove and/or cinnamon) are added to PVP-CMC-BC-GG hydrogel film to improve its antimicrobial, physical, mechanical, and thermal properties as well as shelf-life of cheese. The films are assessed based on their physical, structural, and functional properties, real-time assessment on cheese, and biodegradability. The results revealed that although the addition of oils to the PVP-CMC-BC-GG hydrogel films enhanced its mechanical, hydrophobic, and antimicrobial properties, the biodegradability of PVP-CMC-BC-GG films declined with the addition of EOs. The thermal properties remained the same irrespective of the addition of EOs. The shelf life of cheese was extended for more than 10-12 days, inside the PVP-CMC-BC-GG hydrogel sachet compared to the conventional PE packaging system. Hence the use of the PVP-CMC-BC-GG sachet (containing EO or without EO) is recommended for cheese packaging along with the use of PVP-CMC-BC-GG anthocyanin bio stickers for monitoring the quality of cheese.
- Klíčová slova
- Gouda cheese, PVP-CMC-BC-GG hydrogel film, active, anthocyanin, bioactive packaging, essential oil, food quality, intelligent, red cabbage extract, shelf life,
- Publikační typ
- časopisecké články MeSH
Granulated beet pulp and wheat straw, first separately and then mixed in a weight ratio of 50/50%, underwent a pyrolysis process in a laboratory batch generator with process temperatures of 400 and 500 °C. The feedstock's chemical composition and the pyrolysis products' chemical composition (biochar and pyrolysis gas) were analysed. A synergistic effect was observed in the co-pyrolysis of the combined feedstock, which occurred as an increase the content of the arising gas in relation to the total weight of the products. and as a reduction of bio-oil content. The maximum gas proportion was 21.8% at 500 °C and the minimum between 12.6% and 18.4% for the pyrolysis of individual substrates at 400 °C. The proportions of the gases, including CO, CO2, CH4, H2, and O2, present in the resulting synthesis gases were also analysed. The usage of a higher pyrolysis final temperature strongly affected the increase of the CH4 and H2 concentration and the decrease of CO2 and CO concentration in the pyrolysis gas. The highest percentage of hydrogen in the synthesis gas, around 33%vol, occurred at 500 °C during co-pyrolysis.
- Klíčová slova
- bio-oil, biochar, biomass, gas composition, generator, pyrolysis, synergy,
- Publikační typ
- časopisecké články MeSH
Coffee is a globally consumed beverage that produces a substantial amount of valuable organic waste known as spent coffee grounds (SCG). Although SCG is a non-edible biomass, research initiatives focused on valorizing/utilizing its organic content, protecting the environment, and reducing the high oxygen demand required for its natural degradation. The integration with biorefinery in general and with pyrolysis process in specific is considerered the most successful solid waste management strategy of SCG that produce energy and high-value products. This paper aims at providing a quantitative analysis and discussion of research work done over the last 20 years on SCG as a feedstock in the circular bioeconomy (CBE). Management stratigies of SCG have been thoroughly reviewed and pyrolysis process has been explored as a novel technology in CBE. Results revealed that explored articles belong to Chemical, physical., biological and environmental science branches, with Energy & Fuels as the most reporting themes. Published works correlate SCG to renewable energy, biofuel, and bio-oil, with pyrolysis as a potential valorization approach. Literature review showed that only one study focused on the pyrolysis of defatted spent coffee grounds (DSCG). The insightful conclusions of this paper could assist in proposing several paths to more economically valorization of SCG through biorefinery, where extracted oil can be converted to biofuels or value-added goods. It was highlighted the importance of focusing on the coupling of SCG with CBE as solid waste managment strategy.
- Klíčová slova
- Bio-oil, Biochar, Biorefinery, Pyrolysis, Valorization of SCG,
- MeSH
- biopaliva MeSH
- káva * MeSH
- nakládání s odpady * MeSH
- pyrolýza MeSH
- tuhý odpad MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- biopaliva MeSH
- káva * MeSH
- tuhý odpad MeSH
In this study, a functionalized graphene oxide-cerium oxide nanocatalysts (FGCe) with varying graphene oxide (GO) contents were prepared using an in-situ reflux method. The prepared nanocatalysts showcased improvement in the crystallinity and BET surface area values with increasing GO contents. The efficacies of prepared catalysts were investigated towards oxidative pyrolysis of alkali lignin in an ethanol-water system. Among various nanocatalyst samples, the best lignin conversion (93 %) and bio-oil yield (86 %) were achieved using 50 mg FGCe nanocatalyst (0.5 wt% GO) at 423 K and 60 min. GC-MS and 1HNMR analyses were used to identify significant lignin conversion products, including 2-pentanone-4-hydroxy-4-methyl, 2-methoxyphenol, nonylcyclopropane, vanillin, apocynin, homovanollic acid, and benzoic acid. Kinetic studies revealed that the activation energy for lignin conversion was 24.36 kJ/mol at 423 K. Mechanistic investigations by density functional theory analysis revealed that the lignin breakdown occurred at oxygen bonds producing aromatic.
- Klíčová slova
- Alkali lignin, Cerium oxide, Density functional theory, Functionalized graphene oxide, Pyrolysis,
- MeSH
- alkálie * chemie MeSH
- cer * chemie MeSH
- dusík * chemie MeSH
- grafit * chemie MeSH
- katalýza MeSH
- kinetika MeSH
- lignin * chemie MeSH
- oleje rostlin MeSH
- oxidace-redukce MeSH
- plynová chromatografie s hmotnostně spektrometrickou detekcí MeSH
- polyfenoly MeSH
- pyrolýza * MeSH
- teorie funkcionálu hustoty MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- alkálie * MeSH
- Bio-Oil MeSH Prohlížeč
- cer * MeSH
- ceric oxide MeSH Prohlížeč
- dusík * MeSH
- grafit * MeSH
- graphene oxide MeSH Prohlížeč
- lignin * MeSH
- oleje rostlin MeSH
- polyfenoly MeSH
Bio-oils after hydrotreatment can still contain significant amount of phenols and cyclic olefins as the products of an incomplete deoxygenation. The removal of these compounds would be necessary to produce suitable components for automotive fuels. However, no routine method currently exists for the reliable determination of these groups in hydrotreated bio-oils (HBOs). In this paper, we analyzed 140 different pure oxygenates as model compounds using the bromine number method (ASTM D1159) observing that most compounds present in HBOs react with one equivalent of bromine. The determination of phenols using bromine number method in crude bio-oil is complicated especially by the presence of guaiacols and syringols that react with more than one equivalent of bromine and, thus, the obtained result is significantly overestimated. Further we optimized the chromatographic separation of hydrocarbons from HBOs for the selective determination of olefins content. As no other reactive compounds under the conditions of the method, besides phenols and olefins, were observed in HBOs, the difference between HBO bromine number (before hydrocarbons separation) and olefins content correspond to the total amount of phenols. The method was finally applied to 11 HBOs with different content of oxygen, providing a good correlation between phenols and oxygen content.
- Klíčová slova
- Bio-oils, Bromine number, Hydrotreated, Olefins, Phenols, Pyrolysis,
- Publikační typ
- časopisecké články MeSH
Three hydroxyl-radical producing biomimetic systems, composed of CuII, hydrogen peroxide and pyridine, glucaric or succinic acid, were able to perform decolorization of olive mill wastewaters (OMW) >85 % within 3 d combined with a significant removal of total phenols (>75 %). The systems consisting of 50 mmol/L succinic acid, 5-10 mmol/L CuSO4 and 100 mmol/L H2O2 were the most effective at OMW treatment, and led to the reduction of phenol contents to <1 % along with high decolorization (>88 %) and acceptable values of chemical oxygen demand.
- MeSH
- Bacteria metabolismus MeSH
- biodegradace MeSH
- biologické pigmenty chemie MeSH
- biomimetika metody MeSH
- fenoly chemie MeSH
- hydroxylový radikál chemie MeSH
- měď MeSH
- odpad tekutý - odstraňování metody MeSH
- oleje rostlin * MeSH
- olivový olej MeSH
- oxidace-redukce MeSH
- peroxid vodíku chemie MeSH
- průmyslový odpad MeSH
- volné radikály farmakologie MeSH
- železo chemie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- biologické pigmenty MeSH
- fenoly MeSH
- Fenton's reagent MeSH Prohlížeč
- hydroxylový radikál MeSH
- měď MeSH
- oleje rostlin * MeSH
- olivový olej MeSH
- peroxid vodíku MeSH
- průmyslový odpad MeSH
- volné radikály MeSH
- železo MeSH