We compared the applicability of 3D fibrous scaffolds, produced by our patented centrifugal spinning technology, in soft tissue engineering. The scaffolds were prepared from four different biocompatible and biodegradable thermoplastics, namely, polylactide (PLA), polycaprolactone (PCL), poly(3-hydroxybutyrate) (PHB), and poly(1,4-butylene succinate) (PBS) and their blends. The combined results of SEM and BET analyses revealed an internal hierarchically organized porosity of the polymeric micro/nanofibers. Both nanoporosity and capillary effect are crucial for the water retention capacity of scaffolds designed for tissue engineering. The increased surface area provided by nanoporosity enhances water retention, while the capillary effect facilitates the movement of water and nutrients within the scaffolds. When the scaffolds were seeded with adipose-derived stem cells (ASCs), the ingrowth of these cells was the deepest in the PLA/PCL 13.5/4 (w/w) composite scaffolds. This result is consistent with the relatively large pore size in the fibrous networks, the high internal porosity, and the large specific surface area found in these scaffolds, which may therefore be best suited as a component of adipose tissue substitutes that could reduce postoperative tissue atrophy. Adipose tissue constructs produced in this way could be used in the future instead of conventional fat grafts, for example, in breast reconstruction following cancer ablation.
- Klíčová slova
- PBS, PCL, PHB, PLA, bioartificial adipose tissue, centrifugal spinning technology, hierarchical inner porosity of fibers, mesenchymal stem cells, micro/nanofibrous scaffolds, tissue engineering,
- Publikační typ
- časopisecké články MeSH
This study focused on the development of a suitable synthetic polymer scaffold for bone tissue engineering applications within the biomedical field. The investigation centered on electrospun polyvinylidene fluoride (PVDF) nanofibers, examining their intrinsic properties and biocompatibility with the human osteosarcoma cell line Saos-2. The influence of oxygen, argon, or combined plasma treatment on the scaffold's characteristics was explored. A comprehensive design strategy is outlined for the fabrication of a suitable PVDF scaffold, encompassing the optimization of electrospinning parameters with rotating collector and plasma etching conditions to facilitate a subsequent osteoblast cell culture. The proposed methodology involves the fabrication of the PVDF tissue scaffold, followed by a rigorous series of fundamental analyses encompassing the structural integrity, chemical composition, wettability, crystalline phase content, and cell adhesion properties.
Surface modification of various polymer foils was achieved by UV activation and chemical grafting with cysteamine to improve surface properties and antimicrobial efficacy. UVC activation at 254 nm led to changes in surface wettability and charge density, which allowed the introduction of amino and thiol functional groups by cysteamine grafting. X-ray photoelectron spectroscopy (XPS) confirmed increased nitrogen and sulfur content on the modified surfaces. SEM analysis revealed that UV activation and cysteamine grafting resulted in distinct surface roughness and texturing, which are expected to enhance microbial interactions. Antimicrobial tests showed increased resistance to algal growth (inhibition test) and bacterial colonization (drop plate method), with significant improvement observed for polyethylene terephthalate (PET) and polyetheretherketone (PEEK) foils. The important factors influencing the efficacy included UV exposure time and cysteamine concentration, with longer exposure and higher concentrations leading to bacterial reduction of up to 45.7% for Escherichia coli and 55.6% for Staphylococcus epidermidis. These findings highlight the potential of combining UV activation and cysteamine grafting as an effective method for developing polymeric materials with enhanced antimicrobial function, offering applications in industries such as healthcare and packaging.
- Klíčová slova
- UV radiation, antimicrobial activity, chemical grafting, polymer foils, zeta potential,
- Publikační typ
- časopisecké články MeSH
Thermal modification is an environmentally friendly process that does not utilize chemical agents to enhance the stability and durability of wood. The use of thermally modified wood results in a significantly extended lifespan compared with untreated wood, with minimal maintenance requirements, thereby reducing the carbon footprint. This study examines the impact of varying modification temperatures (160, 180, and 210 °C) on the lignin of spruce wood using the ThermoWood process and following the accelerated aging of thermally modified wood. Wet chemistry methods, including nitrobenzene oxidation (NBO), size exclusion chromatography (SEC), thermogravimetry (TG), differential thermogravimetry (DTG), and Fourier transform infrared spectroscopy (FTIR), were employed to investigate the alterations in lignin. At lower modification temperatures, the predominant reaction is the degradation of lignin, which results in a reduction in the molecular weight and an enhanced yield of NBO (vanillin and vanillic acid) products. At elevated temperatures, condensation and repolymerization reactions become the dominant processes, increasing these traits. The lignin content of aged wood is higher than that of thermally modified wood, which has a lower molecular weight and a lower decomposition temperature. The results demonstrate that lignin isolated from thermally modified wood at the end of its life cycle is a promising feedstock for carbon-based materials and the production of a variety of aromatic monomers, including phenols, aromatic aldehydes and acids, and benzene derivatives.
- Klíčová slova
- infrared spectroscopy, life cycle, lignin, nitrobenzene oxidation, size exclusion chromatography, spruce wood, thermal treatment, thermogravimetry, vanillin,
- Publikační typ
- časopisecké články MeSH
This article is a numerical and experimental study of the mechanical properties of different glass, flax and hybrid composites. By utilizing hybrid composites consisting of natural fibers, the aim is to eventually reduce the percentage usage of synthetic or man-made fibers in composites and obtain similar levels of mechanical properties that are offered by composites using synthetic fibers. This in turn would lead to greener composites being utilized. The advantage of which would be the presence of similar mechanical properties as those of composites made from synthetic fibers along with a reduction in the overall weight of components, leading to much more eco-friendly vehicles. Finite element simulations (FEM) of mechanical properties were performed using ANSYS. The FEM simulations and analysis were performed using standards as required. Subsequently, actual beams/frames with a defined geometry were fabricated for applications in automotive body construction. The tensile performance of such frames was also simulated using ANSYS-based models and was experimentally verified. A correlation with the results of the FEM simulations of mechanical properties was established. The maximum tensile strength of 415 MPa was found for sample 1: G-E (glass-epoxy composite) and the minimum strength of 146 MPa was found for sample 2: F-G-E (G-4) (flax-glass-epoxy composite). The trends were similar, as obtained by simulation using ANSYS. A comparison of the results showed the accuracy of the numerical simulation and experimental specimens with a maximum error of about 8.05%. The experimental study of the tensile properties of polymer matrix composites was supplemented with interlaminar shear strength, and a high accuracy was found. Further, the maximum interlaminar shear strength (ILSS) of 18.5 MPa was observed for sample 1: G-E and the minimum ILSS of 17.0 MPa was observed for sample 2: F-G-E (G-4). The internal fractures were analyzed using a computer tomography analyzer (CTAn). Sample 2: F-G-E (G-4) showed significant interlaminar cracking, while sample 1: G-E showed fiber failure through the cross section rather than interlaminar failure. The results indicate a practical solution of a polymer composite frame as a replacement for existing heavier components in a car, thus helping towards weight reduction and fuel efficiency.
- Klíčová slova
- computed tomography, finite element modeling (FEM), hybrid composite, interlaminar shear strength (ILSS), mechanical properties, tensile test,
- Publikační typ
- časopisecké články MeSH
The objective of the present work was to prepare hybrid epoxy composites with improved mechanical and thermal properties. The simultaneous use of two different modifiers in an epoxy resin was motivated by the expected occurrence of synergistic effects on the performance properties of the matrix. Such a hybrid composite can be used in more severe conditions and/or in broader application areas. Hybrid epoxy composites were prepared with polyurethane (PUR), Nanomer nanoclay and carbon nanotubes (CNT), followed by the evaluation of their mechanical and thermal properties. Synergistic improvements in mechanical properties of hybrid composites were observed for 0.5 wt% Nanomer and 1 wt% carbon nanotubes (CNT), 7.5 wt% PUR and 1 wt% CNT, and 5 wt% PUR and 1 wt% CNT, confirming the occurrence of synergistic effects as to the impact strength (IS) of the matrices, compared to binary systems. The toughening induced by CNT/Nanomer modifiers can be attributed to the specific interfacial interactions between the two nanoparticles, while in the case of CNT/PUR, it can be explained by the combined effects of flexible polymer chains and the specific arrangement of nanoparticles in epoxy systems. Spectroscopy analysis confirmed the occurrence of interaction between OH groups in the epoxy matrix with CNT and reactive groups of PUR. The fracture surface showed plastic deformations, with good dispersion of CNT, explaining the improved mechanical properties of the matrix composites.
- Klíčová slova
- epoxy hybrids, mechanical properties, structure and morphology, synergism, thermal properties,
- Publikační typ
- časopisecké články MeSH
Novel ferrite/polyurethane nanocomposites were synthesized using the in situ polymerization method after the addition of different spinel nanoferrite particles (copper, zinc, and copper-zinc) and examined as potential coatings for medical devices and implants in vascular tissue engineering. The influence of the nanoferrite type on the structure and functional characteristics of the polyurethane composites was investigated by FTIR, SWAXS, AFM, TGA, DSC, nanoindentation, swelling behavior, water contact angle, and water absorption measurements. Biocompatibility was evaluated by examining the cytotoxicity and adhesion of human endothelial cells and fibroblasts onto prepared composites and performing a protein adsorption test. The antioxidant activity was detected by UV-VIS spectroscopy using a 1,1-diphenyl-2-picrylhydrazyl (DPPH) scavenging assay. Embedding the different types of nanoparticles in the polyurethane matrix increased phase mixing, swelling ability, and DPPH scavenging, decreased surface roughness, and differently affected the stiffness of the prepared materials. The composite with zinc ferrite showed improved mechanical properties, hydrophilicity, cell adhesion, and antioxidant activity with similar thermal stability, but lower surface roughness and crosslinking density compared to the pristine polyurethane matrix. The in vitro biocompatibility evaluation demonstrates that all nanocomposites are non-toxic, exhibit good hemocompatibility, and promote cell adhesion, and recommends their use as biocompatible materials for the development of coatings for vascular implants.
- Klíčová slova
- biocompatible polymers, nanoferrites, nanomechanical properties, polyurethane hybrid films, structural properties, vascular graft,
- Publikační typ
- časopisecké články MeSH
This paper introduces cross-wound CFRP shear reinforcement of hollow HPC beams. The CFRP reinforcement was manufactured in the form of a square tubular mesh from carbon rovings oriented at ±45° from the longitudinal axis. The shear reinforcement was made in two variants from carbon yarns with linear densities of 1600 and 3700 tex. Tensile reinforcement made of BFRP bars was positioned directly around the hollow core and was used as a platform for manual winding of the shear reinforcement. The hollow beams were subjected to a three-point bending test with four configurations of the tensile BFRP reinforcement for better evaluation of the effect of the shear reinforcement under different conditions. The 1600 tex shear reinforcement increased the ultimate flexural strength by at least 89% compared to specimens without any shear reinforcement. The 3700 tex shear reinforcement yielded slightly better results in most cases but was not utilized to its full shear capacity as these specimens always failed in shear due to the delamination of the concrete matrix from the shear reinforcement. There was too much reinforcement in the beam cross-section.
The popularity of 3D printing technology is rapidly increasing worldwide. It can be applied to metals, ceramics, composites, hybrids, and polymers. Three-dimensional printing has the potential to replace conventional manufacturing technologies because it is cost effective and environmentally friendly. This paper focuses on the influence of 3D printing conditions on the physical and mechanical properties of polylactic acid (PLA), poly(methyl methacrylate) (PMMA), and poly(ethylene terephthalate glycol-modified) (PETG) materials produced using Fused Deposition Modeling (FDM) technology. The impact of nozzle diameter, layer height, and printing temperature on the mechanical (i.e., bending stiffness and vibration damping) and physical (i.e., sound absorption and light transmission) properties of the studied polymer materials was investigated. It can be concluded that 3D printing conditions significantly influenced the structure and surface shape of the 3D-printed polymer samples and, consequently, their physical and mechanical properties. Therefore, it is essential to consider the type of filament used and the 3D printing conditions for specific 3D-printed material applications.
- Klíčová slova
- 3D printing conditions, light transmission, mechanical vibration, microscopy, polymer materials, sound absorption, three-point bend,
- Publikační typ
- časopisecké články MeSH
This study investigated the moisture absorption and mechanical degradation of epoxy-based polymer systems with Mg-Al/NO3 layered double hydroxide (LDH) nanoparticles content up to 5 wt%. Such systems are developed for multilayer corrosion protective coatings. A sorption model was developed to calculate the moisture concentration field in the multilayer structures using Fick's law of diffusion. The finite-difference method was used for the numerical solution. Epoxy/LDH nanocomposites were prepared using various dispersion methods with solvents, wetting agents, and via a three-roll mill. Moisture absorption was measured under different environmental conditions, including temperatures up to 50 °C and salinity levels up to 26.3 wt% salt solution. The results showed that equilibrium moisture content increased by 50% in hot water, while it was reduced by up to two times in salt solution. The diffusion coefficient in hot water increased up to four times compared to room temperature. The numerical algorithm was validated against experimental data, accurately predicting moisture distribution over time in complex polymer systems. Mechanical tests revealed that the elastic modulus did not change after water exposure; however, the ultimate strength decreased by 10-15%, especially in specimens with 5 wt% LDH.
- Klíčová slova
- epoxy resin, layered double hydroxide, mechanical degradation, moisture absorption, moisture concentration field, multilayered structure,
- Publikační typ
- časopisecké články MeSH