biocompatibility
Dotaz
Zobrazit nápovědu
Biocompatibility tests and a study of the electrical properties of thin films prepared from six electroactive polymer ink formulations based on poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) were performed. The aim was to find a suitable formulation of PEDOT:PSS and conditions for preparing thin films in order to construct printed bioelectronic devices for biomedical applications. The stability and electrical properties of such films were tested on organic electrochemical transistor (OECT)-based sensor platforms and their biocompatibility was evaluated in assays with 3T3 fibroblasts and murine cardiomyocytes. It was found that the thin films prepared from inks without an additive or any thin film post-treatment provide limited conductivity and stability for use in biomedical applications. These properties were greatly improved by using ethylene glycol and thermal annealing. Addition or post-treatment by ethylene glycol in combination with thermal annealing provided thin films with electrical resistance and a stability sufficient to be used in sensing of animal cell physiology. These films coated with collagen IV showed good biocompatibility in the assay with 3T3 fibroblasts when compared to standard cell culture plastics. Selected films were then used in assays with murine cardiomyocytes. We observed that these cells were able to attach to the PEDOT:PSS films and form an active sensor element. Spontaneously beating clusters were formed, indicating a good physiological status for the cardiomyocyte cells. These results open the door to construction of cheap printed electronic devices for biointerfacing in biomedical applications. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 1121-1128, 2018.
- Klíčová slova
- biocompatibility, biointerface, biomedical applications, biosensor, conducting polymer,
- MeSH
- bicyklické sloučeniny heterocyklické chemie MeSH
- biokompatibilní materiály farmakologie MeSH
- buněčné linie MeSH
- buňky 3T3 MeSH
- elektrická impedance MeSH
- elektřina * MeSH
- inkoust * MeSH
- myši MeSH
- polymery chemie MeSH
- polystyreny chemie MeSH
- testování materiálů * MeSH
- voda chemie MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- bicyklické sloučeniny heterocyklické MeSH
- biokompatibilní materiály MeSH
- poly(3,4-ethylene dioxythiophene) MeSH Prohlížeč
- polymery MeSH
- polystyrene sulfonic acid MeSH Prohlížeč
- polystyreny MeSH
- voda MeSH
Titanium surface treatment is a crucial process for achieving sufficient osseointegration of an implant into the bone. If the implant does not heal sufficiently, serious complications may occur, e.g. infection, inflammation, aseptic loosening of the implant, or the stress-shielding effect, as a result of which the implant may need to be reoperated. After a titanium graft has been implanted, several interactions are crucial in order to create a strong bone-implant connection. It is essential that cells adhere to the surface of the implant. Surface roughness has a significant influence on cell adhesion, and also on improving and accelerating osseointegration. Other highly important factors are biocompatibility and resistance to bacterial contamination. Bio-inertness of titanium is ensured by the protective film of titanium oxides that forms spontaneously on its surface. This film prevents the penetration of metal compounds, and it is well-adhesive for calcium and phosphate ions, which are necessary for the formation of the mineralized bone structure. Since the presence of the film alone is not sufficient for the biocompatibility of titanium, a suitable surface finish is required to create a firm bone-implant connection. In this review, we explain and compare the most widely-used methods for modulating the surface roughness of titanium implants in order to enhance cell adhesion on the surface of the implant, e.g. plasma spraying, sandblasting, acid etching, laser treatment, sol-gel etc., The methods are divided into three overlapping groups, according to the type of modification.
- Klíčová slova
- biocompatibility, osseointegration, surface modification, titanium treatment,
- MeSH
- biokompatibilní potahované materiály * MeSH
- lidé MeSH
- osteointegrace * MeSH
- protézy a implantáty * MeSH
- titan * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- biokompatibilní potahované materiály * MeSH
- titan * MeSH
We synthesized Fe foams using water suspensions of micrometric Fe2O3 powder by reducing and sintering the sublimated Fe oxide green body to Fe under 5% H2/Ar gas. The resultant Fe foam showed aligned lamellar macropores replicating the ice dendrites. The compressive behavior and deformation mechanism of the synthesized Fe foam were studied using an acoustic emission (AE) method, with which we detected sudden localized structural changes in the Fe foam material. The evolution of the deformation mechanism was elucidated using the adaptive sequential k-means (ASK) algorithm; specifically, the plastic deformation of the cell struts was followed by localized cell collapse, which eventually led to fracturing of the cell walls. For potential biomedical applications, the corrosion and biocompatibility characteristics of the two synthesized Fe foams with different porosities (50% vs. 44%) were examined and compared. Despite its larger porosity, the superior corrosion behavior of the Fe foam with 50% porosity can be attributed to its larger pore size and smaller microscopic surface area. Based on the cytotoxicity tests for the extracts of the foams, the Fe foam with 44% porosity showed better cytocompatibility than that with 50% porosity.
- Klíčová slova
- Acoustic emission, Biocompatibility, Cellular material, Deformation mechanisms, Iron (oxide),
- MeSH
- akustika * MeSH
- biokompatibilní materiály chemie toxicita MeSH
- buněčné linie MeSH
- difrakce rentgenového záření MeSH
- elektrochemie metody MeSH
- fibroblasty MeSH
- koroze MeSH
- myši MeSH
- pevnost v tlaku MeSH
- poréznost MeSH
- testování materiálů MeSH
- viskoelastické látky chemie MeSH
- železité sloučeniny chemie MeSH
- železo chemie toxicita MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- biokompatibilní materiály MeSH
- ferric oxide MeSH Prohlížeč
- viskoelastické látky MeSH
- železité sloučeniny MeSH
- železo MeSH
Biocompatibility is one of the main prerequisites for safe use of medical devices. Estimation of cytotoxicity is a part of the initial evaluation laid down in ISO standards on biological evaluation of medical devices. Hydrophilic polymers (based on 2-hydroxyethyl methacrylate HEMA) doped by addition of selected additives with antioxidant and/or free radical scavenging potential (vitamin C and hindered amine stabilizer N-(2,2,6,6-tetramethylpiperidin-4-yl)methacrylamide) were tested in different in vitro systems (3T3 Balb/c cell culture and a 3D human skin model) for biocompatibility and suitability for use as wound dressings. The results of the 3T3 NRU cytotoxicity test using both the direct and indirect contact approaches and a 3D skin model modified irritation test (EpiDerm) confirmed high biocompatibility and good skin tolerance of both the basic polymers and those enriched with specific additives up to a balanced level. HEMA polymer showed a beneficial effect against cytotoxicity of an irritant (sodium dodecyl sulfate). The in vitro biocompatibility test results were confirmed by human local skin tolerance testing.
- MeSH
- antioxidancia aplikace a dávkování toxicita MeSH
- biokompatibilní materiály toxicita MeSH
- buňky BALB 3T3 MeSH
- dospělí MeSH
- fibroblasty účinky léků MeSH
- hydrogely aplikace a dávkování toxicita MeSH
- kůže účinky léků MeSH
- lidé středního věku MeSH
- lidé MeSH
- methakryláty aplikace a dávkování toxicita MeSH
- myši MeSH
- náplasťové testy MeSH
- obvazy hydrokoloidní MeSH
- polymery aplikace a dávkování toxicita MeSH
- techniky tkáňových kultur MeSH
- testování materiálů MeSH
- testy kožní dráždivosti MeSH
- viabilita buněk účinky léků MeSH
- vztah mezi dávkou a účinkem léčiva MeSH
- zvířata MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- myši MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- antioxidancia MeSH
- biokompatibilní materiály MeSH
- hydrogely MeSH
- hydroxyethyl methacrylate MeSH Prohlížeč
- methakryláty MeSH
- polymery MeSH
Conducting polymers (CP), namely polyaniline (PANI) and polypyrrole (PPy), are promising materials applicable for the use as biointerfaces as they intrinsically combine electronic and ionic conductivity. Although a number of works have employed PANI or PPy in the preparation of copolymers, composites, and blends with other polymers, there is no systematic study dealing with the comparison of their fundamental biological properties. The present study, therefore, compares the biocompatibility of PANI and PPy in terms of cytotoxicity (using NIH/3T3 fibroblasts and embryonic stem cells) and embryotoxicity (their impact on erythropoiesis and cardiomyogenesis within embryonic bodies). The novelty of the study lies not only in the fact that embryotoxicity is presented for the first time for both studied polymers, but also in the elimination of inter-laboratory variations within the testing, such variation making the comparison of previously published works difficult. The results clearly show that there is a bigger difference between the biocompatibility of the respective polymers in their salt and base forms than between PANI and PPy as such. PANI and PPy can, therefore, be similarly applied in biomedicine when solely their biological properties are considered. Impurity content detected by mass spectroscopy is presented. These results can change the generally accepted opinion of the scientific community on better biocompatibility of PPy in comparison with PANI.
- Klíčová slova
- Biocompatibility, Polyaniline, Polypyrrole,
- MeSH
- aniliny * škodlivé účinky farmakologie MeSH
- buňky NIH 3T3 MeSH
- embryoidní tělíska metabolismus patologie MeSH
- erytropoéza účinky léků MeSH
- kardiomyocyty metabolismus patologie MeSH
- myší embryonální kmenové buňky metabolismus patologie MeSH
- myši MeSH
- polymery * škodlivé účinky farmakologie MeSH
- pyrroly * škodlivé účinky farmakologie MeSH
- testování materiálů * MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- srovnávací studie MeSH
- Názvy látek
- aniliny * MeSH
- polyaniline MeSH Prohlížeč
- polymery * MeSH
- polypyrrole MeSH Prohlížeč
- pyrroly * MeSH
Metallic biomaterial alloys composed of nickel and titanium have unique thermal shape memory, superelastic, and high damping properties, which are widely used in the medicine. The major parameter evaluated in the studies regarding the behaviour of the material in the contact with organism or cells is biocompatibility. The aim of the studies is to clarify the differences in the proliferation, growth, and morphology especially in the cell cultures. The cytotoxicity is affected among other by release of the metal ions in the presence of the metal alloy, which is further dependent on the possible treatments of the material and the corrosive properties. To evaluate the cytotoxicity, wide range of tests including the Sulforhodamine B assay and MTT tests, expression profiles, cell survival tests such as apoptotic test are used. The review compares the cell behaviour in contact with the material alloys composed of nickel and titanium with respect to different materials composition and different surface treatment that affects the ion release. Even though the results published so far are controversial, almost all data suggest sufficient biocompatibility in medical use.
- Klíčová slova
- Alloy, Biocompatibility, Biomaterial, Cell, NiTi,
- MeSH
- apoptóza účinky léků MeSH
- biokompatibilní materiály chemie farmakologie MeSH
- endoteliální buňky pupečníkové žíly (lidské) cytologie účinky léků fyziologie MeSH
- kmenové buňky cytologie účinky léků fyziologie MeSH
- krysa rodu Rattus MeSH
- kultivované buňky MeSH
- lidé MeSH
- myocyty hladké svaloviny cytologie účinky léků fyziologie MeSH
- nádorové buněčné linie MeSH
- nikl chemie farmakologie MeSH
- proliferace buněk účinky léků MeSH
- rhodaminy chemie MeSH
- titan chemie farmakologie MeSH
- tuková tkáň cytologie účinky léků fyziologie MeSH
- viabilita buněk účinky léků MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Názvy látek
- biokompatibilní materiály MeSH
- lissamine rhodamine B MeSH Prohlížeč
- nikl MeSH
- rhodaminy MeSH
- titan MeSH
- titanium nickelide MeSH Prohlížeč
Polyaniline cryogel is a new unique form of polyaniline combining intrinsic electrical conductivity and the material properties of hydrogels. It is prepared by the polymerization of aniline in frozen poly(vinyl alcohol) solutions. The biocompatibility of macroporous polyaniline cryogel was demonstrated by testing its cytotoxicity on mouse embryonic fibroblasts and via the test of embryotoxicity based on the formation of beating foci within spontaneous differentiating embryonic stem cells. Good biocompatibility was related to low contents of low-molecular-weight impurities in polyaniline cryogel, which was confirmed by liquid chromatography. The adhesion and growth of embryonic stem cells, embryoid bodies, cardiomyocytes, and neural progenitors prove that polyaniline cryogel has the potential to be used as a carrier for cells in tissue engineering or bio-sensing. The surface energy as well as the elasticity and porosity of cryogel mimic tissue properties. Polyaniline cryogel can therefore be applied in bio-sensing or regenerative medicine in general, and mainly in the tissue engineering of electrically excitable tissues.
- MeSH
- algoritmy MeSH
- aniliny chemie MeSH
- biokompatibilní materiály chemie MeSH
- buněčné kultury MeSH
- elektrická vodivost MeSH
- fibroblasty MeSH
- kryogely chemie MeSH
- mechanické jevy MeSH
- modul pružnosti MeSH
- myši MeSH
- poréznost MeSH
- teoretické modely MeSH
- testování materiálů MeSH
- tkáňové inženýrství MeSH
- viabilita buněk MeSH
- vysokoúčinná kapalinová chromatografie MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- aniliny MeSH
- biokompatibilní materiály MeSH
- kryogely MeSH
- polyaniline MeSH Prohlížeč
INTRODUCTION: Cell-based pulp regeneration utilizes capping materials underneath a final restoration to seal the tooth after delivering cells into the canal system. Studying the immediate biocompatibility of materials with injected cells has been challenging. This study aimed to utilize a tube model to observe cell response directly and conveniently to the capping materials in a cell culture in vitro system. METHODS: A tapered plastic tube (14 mm in length, 2 mm diameter of the apex opening) to simulate root canal space was filled with fluorescence-labeled dental pulp cells mixed in fibrin gel and the larger end sealed with various capping materials including Mineral Trioxide Aggregate (MTA), Biodentine, hydroxyapatite-tricalcium phosphate (HA-TCP), composite, and glass ionomer. The tube was placed in wells of culture plates and incubated for various times in vitro and observed under the microscope for cell morphological changes. pH changes within the tube were monitored over time. RESULTS: Both fresh MTA and Biodentine caused adverse response to the cells in the tube. Only a few normally growing cells were observed at the apical end. Composite or glass ionomer appeared better tolerated by cells. HA-TCP mixed in fibrin gel demonstrated the highest compatibility with cells; however, using HA-TCP to separate cells from fresh MTA or Biodentine did not reduce the negative effect of these 2 calcium silicate cements. The pH increased within the tube may explain the observed toxicity. CONCLUSIONS: Using HA-TCP mixed in fibrin gel as a capping material appears highly biocompatible to cells while fresh MTA and Biodentine are not.
- Klíčová slova
- Biodentine, MTA, calcium silicate-based cements, capping materials, cell biocompatibility, cytotoxicity, dental pulp stem cells, fibrin gel, hydroxyapatite-tricalcium phosphate, tube model,
- MeSH
- biokompatibilní materiály * MeSH
- fixní kombinace léků MeSH
- kultivované buňky MeSH
- lidé MeSH
- materiály pro překrytí zubní dřeně a pulpektomii * farmakologie MeSH
- oxidy farmakologie MeSH
- regenerativní endodoncie * metody MeSH
- silikáty farmakologie MeSH
- skloionomerní cementy farmakologie MeSH
- sloučeniny hliníku farmakologie MeSH
- sloučeniny vápníku farmakologie MeSH
- techniky in vitro MeSH
- testování materiálů MeSH
- zubní dřeň * cytologie účinky léků MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- biokompatibilní materiály * MeSH
- fixní kombinace léků MeSH
- materiály pro překrytí zubní dřeně a pulpektomii * MeSH
- mineral trioxide aggregate MeSH Prohlížeč
- oxidy MeSH
- silikáty MeSH
- skloionomerní cementy MeSH
- sloučeniny hliníku MeSH
- sloučeniny vápníku MeSH
- tricalcium silicate MeSH Prohlížeč
BACKGROUND AND AIM: Amniotic membrane-derived mesenchymal stem cells (hAM-dMSCs) are a potential source of mesenchymal stem cells which could be used to repair skin damage. The use of mesenchymal stem cells to repair skin damage requires safe, effective and biocompatible agents to evaluate the effectiveness of the result. Quantum dots (QDs) composed of CdSe/ZnS are semiconductor nanocrystals with broad excitation and narrow emission spectra, which have been considered as a new chemical and fluorescent substance for non-invasively labeling different cells in vitro and in vivo. This study investigated the cytotoxic effects of QDs on hAM-dMSCs at different times following labeling. METHODS: Using 0.75, 1.5 and 3.0 μL between quantum dots, labeled human amniotic mesenchymal stem cells were collected on days 1, 2 and 4 and observed morphological changes, performed an MTT cell growth assay and flow cytometry for mesenchymal stem cells molecular markers. RESULTS: Quantum dot concentration 0.75 μg/mL labeled under a fluorescence microscope, cell morphology was observed, The MTT assay showed cells in the proliferative phase. Flow cytometry expression CD29, CD31, CD34, CD44, CD90, CD105 and CD106. CONCLUSIONS: Within a certain range of concentrations between quantum dots labeled human amniotic mesenchymal stem cells has good biocompatibility.
- Klíčová slova
- biocompatibility, human amniotic membrane, mesenchymal stem cells, quantum dots,
- MeSH
- amnion cytologie MeSH
- barvení a značení metody MeSH
- biokompatibilní materiály metabolismus MeSH
- biotest metody MeSH
- fluorescenční mikroskopie metody MeSH
- kvantové tečky škodlivé účinky metabolismus MeSH
- lidé MeSH
- mezenchymální kmenové buňky metabolismus MeSH
- techniky in vitro MeSH
- testování materiálů MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- biokompatibilní materiály MeSH
In recent years, the chorioallantoic membrane (CAM) has emerged as a crucial component of biocompatibility testing for biomaterials designed for regenerative strategies and tissue engineering applications. This study explores angiogenic potential of an innovative acellular and porous biopolymer scaffold, based on polyhydroxybutyrate and chitosan (PHB/CHIT), using the ex ovo quail CAM assay as an alternative to the conventional chick CAM test. On embryonic day 6 (ED6), we placed the tested biomaterials on the CAM alone or soaked them with various substances, including vascular endothelial growth factor (VEGF-A), saline, or the endogenous angiogenesis inhibitor Angiostatin. After 72 h (ED9), we analyzed blood vessels formation, a sign of ongoing angiogenesis, in the vicinity of the scaffold and within its pores. We employed marker for cell proliferation (PHH3), embryonic endothelium (WGA, SNA), myofibroblasts (α-SMA), and endothelial cells (QH1) for morphological and histochemical analysis. Our findings demonstrated the robust angiogenic potential of the untreated scaffold without additional influence from the angiogenic factor VEGF-A. Furthermore, gene expression analysis revealed an upregulation of pro-angiogenic growth factors, including VEGF-A, ANG-2, and VE-Cadherin after 5 days of implantation, indicative of a pro-angiogenic microenvironment. These results underscore the inherent angiogenic potential of the PHB/CHIT composite. Additionally, monitoring of CAM microvilli growing to the scaffold provides a methodology for investigating the biocompatibility of materials using the ex ovo quail CAM assay as a suitable alternative model compared to the chicken CAM platform. This approach offers a rapid screening method for biomaterials in the field of tissue repair/regeneration and engineering.
- Klíčová slova
- Angiogenesis, Avian animal model, Bone regeneration, Chitosan, Polyhydroxybutyrate,
- MeSH
- biokompatibilní materiály * farmakologie MeSH
- chitosan * farmakologie MeSH
- chorioalantoická membrána * účinky léků MeSH
- fyziologická neovaskularizace účinky léků MeSH
- křepelky a křepelovití embryologie MeSH
- testování materiálů MeSH
- tkáňové podpůrné struktury chemie MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- biokompatibilní materiály * MeSH
- chitosan * MeSH