bone regeneration
Dotaz
Zobrazit nápovědu
Regeneration of large bone defects caused by trauma or tumor resection remains one of the biggest challenges in orthopedic surgery. Because of the limited availability of autograft material, the use of artificial bone is prevalent; however, the primary role of currently available artificial bone is restricted to acting as a bone graft extender owing to the lack of osteogenic ability. To explore whether surface modification might enhance artificial bone functionality, in this study we applied low-pressure plasma technology as next-generation surface treatment and processing strategy to chemically (amine) modify the surface of beta-tricalcium phosphate (β-TCP) artificial bone using a CH4/N2/He gas mixture. Plasma-treated β-TCP exhibited significantly enhanced hydrophilicity, facilitating the deep infiltration of cells into interconnected porous β-TCP. Additionally, cell adhesion and osteogenic differentiation on the plasma-treated artificial bone surfaces were also enhanced. Furthermore, in a rat calvarial defect model, the plasma treatment afforded high bone regeneration capacity. Together, these results suggest that amine modification of artificial bone by plasma technology can provide a high osteogenic ability and represents a promising strategy for resolving current clinical limitations regarding the use of artificial bone.
- MeSH
- biokompatibilní materiály metabolismus MeSH
- buněčná diferenciace fyziologie MeSH
- fosforečnany vápenaté metabolismus MeSH
- kostní náhrady metabolismus terapeutické užití MeSH
- krysa rodu Rattus MeSH
- osteogeneze fyziologie MeSH
- regenerace kostí fyziologie MeSH
- transplantace kostí metody MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- beta-tricalcium phosphate MeSH Prohlížeč
- biokompatibilní materiály MeSH
- calcium phosphate MeSH Prohlížeč
- fosforečnany vápenaté MeSH
- kostní náhrady MeSH
Despite the undisputed modern development of synthetic biomaterials that range from bioactive unresorbable to restorable materials, clinically applied osteoconduction bone substitutes still have limitations in the treatment of bone defects. These are the result of the physical and chemical properties of the utilized materials and the biological interactions associated with both local and general reactions of the organism. Mesenchymal stem cells constitute a promising treatment alternative in orthopedics. Preclinical studies regarding the use of mesenchymal stem cells have shown good therapeutic results. However, it is still necessary to advance further in this area and enable the treatment of patients with critically large bone defects. The aim of this review is to describe the role of mesenchymal stem cells in bone repair and regeneration, describe the techniques used in the clinical application of mesenchymal stem cells and outline future research endeavors in this area.
- MeSH
- buněčná diferenciace MeSH
- lidé MeSH
- mezenchymální kmenové buňky fyziologie MeSH
- nemoci kostí terapie MeSH
- regenerace kostí * MeSH
- tkáňové inženýrství MeSH
- transplantace mezenchymálních kmenových buněk * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
Bone fractures and critical-size bone defects are significant public health issues, and clinical treatment outcomes are closely related to the intrinsic properties of the utilized implant materials. Zinc (Zn)-based biodegradable metals (BMs) have emerged as promising bioactive materials because of their exceptional biocompatibility, appropriate mechanical properties, and controllable biodegradation. This review summarizes the state of the art in terms of Zn-based metals for bone repair and regeneration, focusing on bridging the gap between biological mechanism and required bioactivity. The molecular mechanism underlying the release of Zn ions from Zn-based BMs in the improvement of bone repair and regeneration is elucidated. By integrating clinical considerations and the specific bioactivity required for implant materials, this review summarizes the current research status of Zn-based internal fixation materials for promoting fracture healing, Zn-based scaffolds for regenerating critical-size bone defects, and Zn-based barrier membranes for reconstituting alveolar bone defects. Considering the significant progress made in the research on Zn-based BMs for potential clinical applications, the challenges and promising research directions are proposed and discussed.
- Klíčová slova
- Biocompatibility, Biodegradable metals, Bone fracture healing, Bone tissue engineering, Guided bone regeneration, Zinc,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Bone defects resulting from trauma, surgery, and congenital, infectious, or oncological diseases are a functional and aesthetic burden for patients. Bone regeneration is a demanding procedure, involving a spectrum of molecular processes and requiring the use of various scaffolds and substances, often yielding an unsatisfactory result. Recently, the new collagen sponge and its structural derivatives manufactured from European carp (Cyprinus carpio) were introduced and patented. Due to its fish origin, the novel scaffold poses no risk of allergic reactions or transfer of zoonoses and additionally shows superior biocompatibility, mechanical stability, adjustable degradation rate, and porosity. In this review, we focus on the basic principles of bone regeneration and describe the characteristics of an "ideal" bone scaffold focusing on guided bone regeneration. Moreover, we suggest several possible applications of this novel material in bone regeneration processes, thus opening new horizons for further research.
- Klíčová slova
- GBR membrane, bioactive scaffold, bone regeneration, carp collagen, tissue engineering,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
A three-dimensional scaffold of type I collagen and hydroxyapatite enriched with polycaprolactone nanofibers (Coll/HA/PCL), autologous mesenchymal stem cells (MSCs) in osteogenic media, and thrombocyte-rich solution (TRS) was an optimal implant for bone regeneration in vivo in white rabbits. Nanofibers optimized the viscoelastic properties of the Coll/HA scaffold for bone regeneration. MSCs and TRS in the composite scaffold improved bone regeneration. Three types of Coll/HA/PCL scaffold were prepared: an MSC-enriched scaffold, a TRS-enriched scaffold, and a scaffold enriched with both MSCs and TRS. These scaffolds were implanted into femoral condyle defects 6 mm in diameter and 10-mm deep. Untreated defects were used as a control. Macroscopic and histological analyses of the regenerated tissue from all groups were performed 12 weeks after implantation. The highest volume and most uniform distribution of newly formed bone occurred in defects treated with scaffolds enriched with both MSCs and TRS compared with that in defects treated with scaffolds enriched by either component alone. The modulus of elasticity in compressive testing was significantly higher in the Coll/HA/PCL scaffold than those without nanofibers. The composite Coll scaffold functionalized with PCL nanofibers and enriched with MSCs and TRS appears to be a novel treatment for bone defects.
- Klíčová slova
- bone regeneration, collagen/hydroxyapatite scaffold, in vivo, mesenchymal stem cells, nanofibers, platelet-rich plasma,
- MeSH
- hydroxyapatit chemie MeSH
- kolagen chemie MeSH
- králíci MeSH
- kultivované buňky MeSH
- mezenchymální kmenové buňky cytologie metabolismus MeSH
- nanovlákna chemie MeSH
- polyestery chemie MeSH
- regenerace kostí * MeSH
- tkáňové podpůrné struktury chemie MeSH
- trombocyty chemie MeSH
- zvířata MeSH
- Check Tag
- králíci MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- hydroxyapatit MeSH
- kolagen MeSH
- polycaprolactone MeSH Prohlížeč
- polyestery MeSH
Bone marrow-derived cells represent a heterogeneous cell population containing haematopoietic stem and progenitor cells. These cells have been identified as potential candidates for use in cell therapy for the regeneration of damaged tissues caused by trauma, degenerative diseases, ischaemia and inflammation or cancer treatment. In our study, we examined a model using whole-body irradiation and the transplantation of bone marrow (BM) or haematopoietic stem cells (HSCs) to study the repair of haematopoiesis, extramedullary haematopoiesis and the migration of green fluorescent protein (GFP(+)) transplanted cells into non-haematopoietic tissues. We investigated the repair of damage to the BM, peripheral blood, spleen and thymus and assessed the ability of this treatment to induce the entry of BM cells or GFP(+) lin(-) Sca-1(+) cells into non-haematopoietic tissues. The transplantation of BM cells or GFP(+) lin(-) Sca-1(+) cells from GFP transgenic mice successfully repopulated haematopoiesis and the haematopoietic niche in haematopoietic tissues, specifically the BM, spleen and thymus. The transplanted GFP(+) cells also entered the gastrointestinal tract (GIT) following whole-body irradiation. Our results demonstrate that whole-body irradiation does not significantly alter the integrity of tissues such as those in the small intestine and liver. Whole-body irradiation also induced myeloablation and chimerism in tissues, and induced the entry of transplanted cells into the small intestine and liver. This result demonstrates that grafted BM cells or GFP(+) lin(-) Sca-1(+) cells are not transient in the GIT. Thus, these transplanted cells could be used for the long-term treatment of various pathologies or as a one-time treatment option if myeloablation-induced chimerism alone is not sufficient to induce the entry of transplanted cells into non-haematopoietic tissues.
- Klíčová slova
- Chimerism, cell recruitment, cell trafficking, stem cells, tissue regeneration,
- MeSH
- biologické modely MeSH
- buňky kostní dřeně cytologie MeSH
- celotělové ozáření * MeSH
- chimérismus * MeSH
- DNA metabolismus MeSH
- gastrointestinální trakt cytologie fyziologie MeSH
- hematopoetické kmenové buňky cytologie MeSH
- hematopoéza MeSH
- játra cytologie MeSH
- myši inbrední C57BL MeSH
- průtoková cytometrie MeSH
- regenerace * MeSH
- tenké střevo cytologie fyziologie MeSH
- transplantace hematopoetických kmenových buněk * MeSH
- transplantace kostní dřeně * MeSH
- zelené fluorescenční proteiny metabolismus MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- DNA MeSH
- zelené fluorescenční proteiny MeSH
This study investigates the impact of hydroxyapatite (HA) nanoparticles (NPs) on the cellular responses of poly(L-lactide-co-ε-caprolactone) (PLCL) scaffolds in bone tissue engineering applications. Three types of PLCL scaffolds were fabricated, varying in HANPs content. Saos-2 osteoblast-like cells (OBs) and THP-1-derived osteoclast-like cells (OCs) were co-cultured on the scaffolds, and cell proliferation was assessed using the MTS assay. The amount of double-stranded DNA (dsDNA) was quantified to evaluate cell proliferation. Expression levels of OBs and OCs markers were analyzed via quantitative polymerase chain reaction (qPCR) and the production of Collagen type I was visualized using confocal microscopy. Additionally, enzymatic activity of alkaline phosphatase (ALP) and tartrate-resistant acid phosphatase (TRAP or ACP5) was measured to assess OB and OC function, respectively. Interestingly, despite the scaffold's structured character supporting the growth of the Saos-2 OBs and THP-1-derived OCs coculture, the incorporation of HANPs did not significantly enhance cellular responses compared to scaffolds without HANPs, except for collagen type I production. These findings suggest the need for further investigation into the potential benefits of HANPs in bone tissue engineering applications. Nevertheless, our study contributes valuable insights into optimizing biomaterial design for bone tissue regeneration, with implications for drug screening and material testing protocols.
- Klíčová slova
- PLCL, bone regeneration, hydroxyapatite, osteoblasts, osteoclasts, scaffold, tissue engineering,
- MeSH
- buněčné linie MeSH
- hydroxyapatit * chemie MeSH
- kokultivační techniky MeSH
- lidé MeSH
- nanočástice * chemie MeSH
- nanovlákna * chemie MeSH
- osteoblasty cytologie metabolismus účinky léků MeSH
- osteogeneze MeSH
- osteoklasty cytologie metabolismus účinky léků MeSH
- polyestery * chemie MeSH
- proliferace buněk účinky léků MeSH
- regenerace kostí * účinky léků MeSH
- THP-1 buňky MeSH
- tkáňové inženýrství metody MeSH
- tkáňové podpůrné struktury chemie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- hydroxyapatit * MeSH
- poly(lactic acid-co-epsilon-caprolactone) MeSH Prohlížeč
- polyestery * MeSH
Scaffolds can be considered as one of the most promising treatments for bone tissue regeneration. Herein, blends of chitosan, poly(vinyl alcohol), and hydroxyapatite in different ratios were used to synthesize scaffolds via freeze-drying. Mechanical tests, FTIR, swelling and solubility degree, DSC, morphology, and cell viability were used as characterization techniques. Statistical significance of the experiments was determined using a two-way analysis of variance (ANOVA) with p < 0.05. Crosslinked and plasticized scaffolds absorbed five times more water than non-crosslinked and plasticized ones, which is an indicator of better hydrophilic features, as well as adequate resistance to water without detriment of the swelling potential. Indeed, the tested mechanical properties were notably higher for samples which were undergone to crosslinking and plasticized process. The presence of chitosan is determinant in pore formation and distribution which is an imperative for cell communication. Uniform pore size with diameters ranging from 142 to 519 µm were obtained, a range that has been described as optimal for bone tissue regeneration. Moreover, cytotoxicity was considered as negligible in the tested conditions, and viability indicates that the material might have potential as a bone regeneration system.
- Klíčová slova
- cell differentiation, cell proliferation, chitosan, poly(vinyl alcohol), scaffolds,
- MeSH
- biokompatibilní materiály chemie terapeutické užití MeSH
- chitosan chemická syntéza chemie terapeutické užití MeSH
- hydroxyapatit chemická syntéza chemie terapeutické užití MeSH
- kosti a kostní tkáň chemie MeSH
- lidé MeSH
- osteoblasty účinky léků MeSH
- polyvinylalkohol chemická syntéza chemie terapeutické užití MeSH
- proliferace buněk účinky léků MeSH
- regenerace kostí účinky léků MeSH
- tkáňové inženýrství * MeSH
- tkáňové podpůrné struktury chemie MeSH
- vývoj kostí účinky léků MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- biokompatibilní materiály MeSH
- chitosan MeSH
- hydroxyapatit MeSH
- polyvinylalkohol MeSH
The present article describes the state of the art in the rapidly developing field of bone tissue engineering, where many disciplines, such as material science, mechanical engineering, clinical medicine and genetics, are interconnected. The main objective is to restore and improve the function of bone tissue by scaffolds, providing a suitable environment for tissue regeneration and repair. Strategies and materials used in oral regenerative therapies correspond to techniques generally used in bone tissue engineering. Researchers are focusing on developing and improving new materials to imitate the native biological neighborhood as authentically as possible. The most promising is a combination of cells and matrices (scaffolds) that can be fabricated from different kinds of materials. This review summarizes currently available materials and manufacturing technologies of scaffolds for bone-tissue regeneration.
- Klíčová slova
- bone tissue engineering, hydrogels, regenerative medicine, scaffolds, stem cells,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Recently, milk-derived proteins have attracted attention for applications in the biomedical field such as tissue regeneration. Whey protein isolate (WPI), especially its main component β-lactoglobulin, can modulate immunity and acts as an antioxidant, antitumor, antiviral, and antibacterial agent. There are very few reports of the application of WPI in tissue engineering, especially in bone tissue engineering. In this study, we tested the influence of different concentrations of WPI on behavior of human osteoblast-like Saos-2 cells, human adipose tissue-derived stem cells (ASC), and human neonatal dermal fibroblasts (FIB). The positive effect on growth was apparent for Saos-2 cells and FIB but not for ASC. However, the expression of markers characteristic for early osteogenic cell differentiation [type-I collagen (COL1) and alkaline phosphatase (ALP)] as well as ALP activity, increased dose-dependently in ASC. Importantly, Saos-2 cells were able to deposit calcium in the presence of WPI, even in a proliferation medium without other supplements that support osteogenic cell differentiation. The results indicate that, depending on the cell type, WPI can act as an enhancer of cell proliferation and osteogenic differentiation. Therefore, enrichment of biomaterials for bone regeneration with WPI seems a promising approach, especially due to the low cost of WPI.
- Klíčová slova
- adipose-derived stem cell, cell proliferation, osteogenic differentiation, whey protein isolate,
- MeSH
- alkalická fosfatasa metabolismus MeSH
- buněčná diferenciace MeSH
- kmenové buňky cytologie metabolismus MeSH
- kolagen typu I metabolismus MeSH
- kultivované buňky MeSH
- lidé MeSH
- osteoblasty cytologie metabolismus MeSH
- osteogeneze * MeSH
- osteokalcin metabolismus MeSH
- proliferace buněk MeSH
- regenerace kostí * MeSH
- skot MeSH
- syrovátkové proteiny metabolismus MeSH
- tkáňové inženýrství MeSH
- tuková tkáň cytologie metabolismus MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- skot MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- alkalická fosfatasa MeSH
- kolagen typu I MeSH
- osteokalcin MeSH
- syrovátkové proteiny MeSH