Amoeboid protists are extremely abundant and diverse in natural systems where they often play outstanding ecological roles. They can be found in almost all major eukaryotic divisions, and genomic approaches are bringing major changes in our perception of their deep evolutionary relationships. At fine taxonomic levels, the generalization of barcoding is revealing a considerable and unsuspected specific diversity that can be appreciated with careful morphometric analyses based on light and electron microscopic observations. We provide examples on the difficulties and advances in amoeboid protists systematics in a selection of groups that were presented at the VIIIth ECOP/ISOP meeting in Rome, 2019. We conclude that, in all studied groups, important taxonomical rearrangements will certainly take place in the next few years, and systematics must be adapted to incorporate these changes. Notably, nomenclature should be flexible enough to integrate many new high level taxa, and a unified policy must be adopted to species description and to the establishment of types.
- Klíčová slova
- Cercozoa, Lobose amoebae, Myxomycetes, Taxonomy, Testate amoebae,
- MeSH
- Amoebozoa klasifikace MeSH
- biodiverzita MeSH
- klasifikace * MeSH
- terminologie jako téma MeSH
- výzkum trendy MeSH
- Publikační typ
- kongresy MeSH
Despite their importance, how plant communities and soil microorganisms interact to determine the capacity of ecosystems to provide multiple functions simultaneously (multifunctionality) under climate change is poorly known. We conducted a common garden experiment using grassland species to evaluate how plant functional structure and soil microbial (bacteria and protists) diversity and abundance regulate soil multifunctionality responses to joint changes in plant species richness (one, three and six species) and simulated climate change (3°C warming and 35% rainfall reduction). The effects of species richness and climate on soil multifunctionality were indirectly driven via changes in plant functional structure and their relationships with the abundance and diversity of soil bacteria and protists. More specifically, warming selected for the larger and most productive plant species, increasing the average size within communities and leading to reductions in functional plant diversity. These changes increased the total abundance of bacteria that, in turn, increased that of protists, ultimately promoting soil multifunctionality. Our work suggests that cascading effects between plant functional traits and the abundance of multitrophic soil organisms largely regulate the response of soil multifunctionality to simulated climate change, and ultimately provides novel experimental insights into the mechanisms underlying the effects of biodiversity and climate change on ecosystem functioning.
- Klíčová slova
- bacteria, biodiversity, climate change, ecosystem functioning, environmental filtering, nutrient cycles, protist, species richness,
- MeSH
- biodiverzita MeSH
- ekosystém MeSH
- fyziologie bakterií MeSH
- fyziologie rostlin * MeSH
- klimatické změny * MeSH
- půda * chemie MeSH
- půdní mikrobiologie * MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- půda * MeSH