Maldives islands host a unique biodiversity, but their integrity is threatened by climate change and impacting land-uses (e.g. cemented or agricultural areas). As pollinators provide key services for the ecosystems and for the inhabitants, it is crucial to know which pollinators occur in the islands, to characterise their genetic identity and to understand which plants they visit and the size of the human impact. Given that no significant faunistic surveys of Hymenoptera have been published for the country in more than 100 years and that Syrphidae were only partly investigated, we sampled islands in the central part of the Maldives country (Faafu and Daahlu atolls) and hand-netted flower-visiting bees, wasps and hoverflies (Hymenoptera: Anthophila, Crabronidae, Sphecidae, Vespidae, Scoliidae and Diptera: Syrphidae). Overall, we found 21 species; 76.4% of the collected specimens were Anthophila (bees), 12.7% belonged to several families of wasps and 10.8% of individuals were Syrphidae. It seems that one third of species are new for the Maldives, based on the published literature. Human land-uses seem to shape the local pollinator fauna since the assemblages of bees, wasps and hoverflies from urbanised and agricultural islands differed from those in resort and natural ones. These pollinators visited 30 plant species in total, although some invasive plants hosted the highest number of flower visitor species. Biogeographically, this pollinating fauna is mostly shared with Sri Lanka and India. Genetically, the used marker hinted for a unique fauna in relation to the rest of the distribution ranges in most cases, although generally within the level of intraspecific genetic variation. This study significantly contributes to increasing the knowledge on the pollinator diversity and genetic identity in Maldives islands also considering the important implications for the islands' land-use and the role of invasive plants. This study will be pivotal for future pollination studies and biodiversity conservation efforts in the region.
- Klíčová slova
- Anthophila, Apoidea, DNA barcoding, Syrphidae, Vespoidea, animals of tropical islands, anthropogenetic habitat disturbance, distribution in the oriental region, ecosystem service of pollination, flower visitor, land use effect on pollinators, oceanic island biodiversity,
- Publikační typ
- časopisecké články MeSH
The way pollinators gather resources may play a key role for buffering their population declines. Social pollinators like bumblebees could adjust their foraging after significant workforce reductions to keep provisions to the colony optimal, especially in terms of pollen diversity and quantity. To test what effects a workforce reduction causes on the foraging for pollen, commercially-acquired colonies of the bumblebee Bombus terrestris were allowed to forage in the field and they were experimentally manipulated by removing half the number of workers. For each bumblebee, the pollen pellets were taxonomically identified with DNA metabarcoding of the ITS2 region followed by a statistical filtering based on ROC curves to filter out underrepresented OTUs. Video cameras and network analyses were employed to investigate changes in foraging strategies and behaviour. After filtering out the false-positives, HTS metabarcoding yielded a high plant diversity in the pollen pellets; for plant identity and pollen quantity traits no differences emerged between samples from treated and from control colonies, suggesting that plant choice was influenced mainly by external factors such as the plant phenology. The colonies responded to the removal of 50% of their workers by increasing the foraging activity of the remaining workers, while only negligible changes were found in diet breadth and indices describing the structure of the pollen transport network. Therefore, a consistency in the bumblebees' feeding strategies emerges in the short term despite the lowered workforce.
- MeSH
- biodiverzita MeSH
- fyziologie výživy zvířat MeSH
- opylení fyziologie MeSH
- populační dynamika MeSH
- pyl * genetika MeSH
- rostliny klasifikace genetika MeSH
- stravovací zvyklosti MeSH
- taxonomické DNA čárové kódování MeSH
- včely fyziologie MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Česká republika MeSH