In vitro cell models offer a unique opportunity for conducting toxicology research, and the human lung adenocarcinoma cell line A549 is commonly used for toxicology testing strategies. It is essential to determine whether the response of these cells grown in different laboratories is consistent. In this study, A549 cells were grown under both submerged and air-liquid interface (ALI) conditions following an identical cell seeding protocol in two independent laboratories. The cells were switched to the ALI after four days of submerged growth, and their behaviour was compared to submerged conditions. The membrane integrity, cell viability, morphology, and (pro-)inflammatory response upon positive control stimuli were assessed at days 3, 5, and 7 under submerged conditions and at days 5, 7, and 10 at the ALI. Due to the high variability of the results between the two laboratories, the experiment was subsequently repeated using identical reagents at one specific time point and condition (day 5 at the ALI). Despite some variability, the results were more comparable, proving that the original protocol necessitated improvements. In conclusion, the use of detailed protocols and consumables from the same providers, special training of personnel for cell handling, and endpoint analysis are critical to obtain reproducible results across independent laboratories.
- Klíčová slova
- Alveolar epithelial cells, In vitro model, Inter-laboratory assessment, Lung model, Standard operating procedure,
- MeSH
- buněčná diferenciace účinky léků MeSH
- buněčné kultury * MeSH
- buňky A549 MeSH
- epitelové buňky * účinky léků MeSH
- interleukin-6 metabolismus MeSH
- interleukin-8 metabolismus MeSH
- laboratoře MeSH
- lidé MeSH
- lipopolysacharidy farmakologie MeSH
- proliferace buněk účinky léků MeSH
- reprodukovatelnost výsledků MeSH
- TNF-alfa farmakologie MeSH
- viabilita buněk účinky léků MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- CXCL8 protein, human MeSH Prohlížeč
- IL6 protein, human MeSH Prohlížeč
- interleukin-6 MeSH
- interleukin-8 MeSH
- lipopolysacharidy MeSH
- TNF-alfa MeSH
In vitro three-dimensional (3D) lung cell models have been thoroughly investigated in recent years and provide a reliable tool to assess the hazard associated with nanomaterials (NMs) released into the air. In this study, a 3D lung co-culture model was optimized to assess the hazard potential of multiwalled carbon nanotubes (MWCNTs), which is known to provoke inflammation and fibrosis, critical adverse outcomes linked to acute and prolonged NM exposure. The lung co-cultures were exposed to MWCNTs at the air-liquid interface (ALI) using the VITROCELL® Cloud system while considering realistic occupational exposure doses. The co-culture model was composed of three human cell lines: alveolar epithelial cells (A549), fibroblasts (MRC-5), and macrophages (differentiated THP-1). The model was exposed to two types of MWCNTs (Mitsui-7 and Nanocyl) at different concentrations (2-10 μg/cm2) to assess the proinflammatory as well as the profibrotic responses after acute (24 h, one exposure) and prolonged (96 h, repeated exposures) exposure cycles. The results showed that acute or prolonged exposure to different concentrations of the tested MWCNTs did not induce cytotoxicity or apparent profibrotic response; however, suggested the onset of proinflammatory response.
- Klíčová slova
- air-liquid interface, carbon nanotubes, co-culture, in vitro, lung, multiwalled carbon nanotubes, profibrotic, proinflammatory, toxicity,
- MeSH
- aerosoly MeSH
- alveolární makrofágy metabolismus patologie MeSH
- biologické modely * MeSH
- buňky A549 MeSH
- fibroblasty metabolismus patologie MeSH
- lidé MeSH
- nanotrubičky uhlíkové škodlivé účinky MeSH
- pneumocyty metabolismus patologie MeSH
- THP-1 buňky MeSH
- zánět chemicky indukované metabolismus MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- aerosoly MeSH
- nanotrubičky uhlíkové MeSH