Haemoglobin is a key molecule for oxygen transport in vertebrates. It exhibits remarkable gene diversity in teleost fishes, reflecting adaptation to various aquatic environments. In this study, we present the dynamic evolution of haemoglobin subunit genes based on a comparison of high-quality genome assemblies of 24 vertebrate species, including 17 teleosts (of which six are cichlids). Our findings indicate that teleost genomes contain a range of haemoglobin genes, from as few as five in fugu to as many as 43 in salmon, with the latter being the largest repertoire found in vertebrates. We find evidence that the teleost ancestor had at least four Hbα and three or four Hbβ subunit genes, and that the current gene diversity emerged during teleost radiation, driven primarily by (tandem) gene duplications, genome compaction, and rearrangement dynamics. We provide insights into the genomic organisation of haemoglobin clusters in different teleost species. We further show that the evolution of paralogous rhbdf1 genes flanking both teleost clusters (LA and MN) supports the hypothesis for the origin of the LA cluster by rearrangement within teleosts, rather than by the teleost specific whole-genome duplication. We specifically focus on cichlid fishes, where adaptation to low oxygen environment plays role in species diversification. Our analysis of six cichlid genomes, including Pungu maclareni from the Barombi Mbo crater lake, for which we sequenced a representative genome, reveals 18-32 copies of the Hb genes, and elevated rates of non-synonymous substitutions compared to other teleosts. Overall, this work facilitates a deeper understanding of how haemoglobin genes contribute to the adaptive potential of teleosts.
- Klíčová slova
- cichlids, duplication, evolution, haemoglobin, synteny, teleosts,
- MeSH
- cichlidy * genetika MeSH
- duplikace genu * genetika MeSH
- fylogeneze * MeSH
- genom genetika MeSH
- genová přestavba genetika MeSH
- hemoglobiny * genetika MeSH
- molekulární evoluce * MeSH
- ryby * genetika MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- hemoglobiny * MeSH
With the advent of high-throughput genome sequencing, bioinformatics training has become essential for research in evolutionary biology and related fields. However, individual research groups are often not in the position to teach students about the most up-to-date methodology in the field. To fill this gap, extended bioinformatics courses have been developed by various institutions and provide intense training over the course of two or more weeks. Here, we describe our experience with the organization of a course in one of the longest-running extended bioinformatics series of workshops, the Evomics Workshop on Population and Speciation Genomics that takes place biennially in the UNESCO world heritage town of Český Krumlov, Czech Republic. We list the key ingredients that make this workshop successful in our view, explain the routine for workshop organization that we have optimized over the years, and describe the most important lessons that we have learned from it. We report the results of a survey conducted among past workshop participants that quantifies measures of effective teaching and provide examples of how the workshop setting has led to the cross-fertilisation of ideas and ultimately scientific progress. We expect that our account may be useful for other groups aiming to set up their own extended bioinformatics courses.
- Klíčová slova
- Bioinformatics, Course, Education, Genomics, Workshop,
- Publikační typ
- časopisecké články MeSH