The most widespread method for the synthesis of 2D-2D heterostructures is the direct growth of one material on top of the other. Alternatively, flakes of different materials can be manually stacked on top of each other. Both methods typically involve stacking 2D layers through van der Waals forces-such that these materials are often referred to as van der Waals heterostructures-and are stacked one crystal or one device at a time. Here we describe the covalent grafting of 2H-MoS2 flakes onto graphene monolayers embedded in field-effect transistors. A bifunctional molecule featuring a maleimide and a diazonium functional group was used, known to connect to sulfide- and carbon-based materials, respectively. MoS2 flakes were exfoliated, functionalized by reaction with the maleimide moieties and then anchored to graphene by the diazonium groups. This approach enabled the simultaneous functionalization of several devices. The electronic properties of the resulting heterostructure are shown to be dominated by the MoS2-graphene interface.
- Publikační typ
- časopisecké články MeSH
The combination of 2D materials opens a wide range of possibilities to create new-generation structures with multiple applications. Covalently cross-linked approaches are a ground-breaking strategy for the formation of homo or heterostructures made by design. However, the covalent assembly of transition metal dichalcogenides flakes is relatively underexplored. Here, a simple covalent cross-linking method to build 2H-MoS2 -MoS2 homostructures is described, using commercially available bismaleimides. These assemblies are mainly connected vertically, basal plane to basal plane, creating specific molecular sized spaces between MoS2 sheets. Therefore, this straightforward approach gives access to the controlled connection of sulfide-based 2D materials.
- Klíčová slova
- 2D materials, MoS2, covalent functionalization, covalent homostructure,
- Publikační typ
- časopisecké články MeSH
Most air-stable 2D materials are relatively inert, which makes their chemical modification difficult. In particular, in the case of MoS2 , the semiconducting 2 H-MoS2 is much less reactive than its metallic counterpart, 1T-MoS2 . As a consequence, there are hardly any reliable methods for the covalent modification of 2 H-MoS2 . An ideal method for the chemical functionalization of such materials should be both mild, not requiring the introduction of a large number of defects, and versatile, allowing for the decoration with as many different functional groups as possible. Herein, a comprehensive study on the covalent functionalization of 2 H-MoS2 with maleimides is presented. The use of a base (Et3 N) leads to the in situ formation of a succinimide polymer layer, covalently connected to MoS2 . In contrast, in the absence of base, functionalization stops at the molecular level. Moreover, the functionalization protocol is mild (occurs at room temperature), fast (nearly complete in 1 h), and very flexible (11 different solvents and 10 different maleimides tested). In practical terms, the procedures described here allow for the chemist to manipulate 2 H-MoS2 in a very flexible way, decorating it with polymers or molecules, and with a wide range of functional groups for subsequent modification. Conceptually, the spurious formation of an organic polymer might be general to other methods of functionalization of 2D materials, where a large excess of molecular reagents is typically used.
- Klíčová slova
- 2D materials, MoS2, click chemistry, covalent functionalization, maleimide,
- Publikační typ
- časopisecké články MeSH