Microfluidic devices are becoming mainstream tools to recapitulate in vitro the behavior of cells and tissues. In this study, we use microfluidic devices filled with hydrogels of mixed collagen-Matrigel composition to study the migration of lung cancer cells under different cancer invasion microenvironments. We present the design of the microfluidic device, characterize the hydrogels morphologically and mechanically and use quantitative image analysis to measure the migration of H1299 lung adenocarcinoma cancer cells in different experimental conditions. Our results show the plasticity of lung cancer cell migration, which turns from mesenchymal in collagen only matrices, to lobopodial in collagen-Matrigel matrices that approximate the interface between a disrupted basement membrane and the underlying connective tissue. Our quantification of migration speed confirms a biphasic role of Matrigel. At low concentration, Matrigel facilitates migration, most probably by providing a supportive and growth factor retaining environment. At high concentration, Matrigel slows down migration, possibly due excessive attachment. Finally, we show that antibody-based integrin blockade promotes a change in migration phenotype from mesenchymal or lobopodial to amoeboid and analyze the effect of this change in migration dynamics, in regards to the structure of the matrix. In summary, we describe and characterize a robust microfluidic platform and a set of software tools that can be used to study lung cancer cell migration under different microenvironments and experimental conditions. This platform could be used in future studies, thus benefitting from the advantages introduced by microfluidic devices: precise control of the environment, excellent optical properties, parallelization for high throughput studies and efficient use of therapeutic drugs.
- MeSH
- buněčné sféroidy MeSH
- difuze MeSH
- extracelulární matrix MeSH
- fenotyp MeSH
- fixní kombinace léků MeSH
- hydrogely MeSH
- kolagen * chemie ultrastruktura MeSH
- konfokální mikroskopie MeSH
- laminin * chemie ultrastruktura MeSH
- lidé MeSH
- mechanické jevy MeSH
- metastázy nádorů MeSH
- mikrofluidika * metody MeSH
- nádorové buněčné linie MeSH
- nádorové buňky kultivované MeSH
- nádorové mikroprostředí MeSH
- pohyb buněk * MeSH
- proteoglykany * chemie ultrastruktura MeSH
- tkáňové podpůrné struktury * chemie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- fixní kombinace léků MeSH
- hydrogely MeSH
- kolagen * MeSH
- laminin * MeSH
- matrigel MeSH Prohlížeč
- proteoglykany * MeSH
We present a fast and robust approach to tracking the evolving shape of whole fluorescent cells in time-lapse series. The proposed tracking scheme involves two steps. First, coherence-enhancing diffusion filtering is applied on each frame to reduce the amount of noise and enhance flow-like structures. Second, the cell boundaries are detected by minimizing the Chan-Vese model in the fast level set-like and graph cut frameworks. To allow simultaneous tracking of multiple cells over time, both frameworks have been integrated with a topological prior exploiting the object indication function. The potential of the proposed tracking scheme and the advantages and disadvantages of both frameworks are demonstrated on 2-D and 3-D time-lapse series of rat adipose-derived mesenchymal stem cells and human lung squamous cell carcinoma cells, respectively.
- MeSH
- buněčné jádro chemie MeSH
- buněčný tracking metody MeSH
- fluorescenční mikroskopie metody MeSH
- krysa rodu Rattus MeSH
- lidé MeSH
- mezenchymální kmenové buňky cytologie MeSH
- nádorové buněčné linie MeSH
- počítačové zpracování obrazu metody MeSH
- tvar buňky fyziologie MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH