Aphids are a serious pest for peach crops. They have traditionally been managed with insecticides, but there is increasing concern about the risk that insecticides pose to both humans and the environment. As a first step to use biological control in aphid management, we conducted a 3-year field survey in northeastern Spain to determine which parasitoids and hyperparasitoids were most prevalent on two aphids, Myzus persicae (Sulzer) and Hyalopterus spp. Koch, the most harmful to peach trees. We collected 11 parasitoid species from M. persicae, with Aphidius matricariae (Haliday) being the most abundant. Two parasitoid species were also collected from Hyalopterus spp., Aphidius transcaspicus Telenga and Praon volucre (Haliday). Hyperparasitoid species overlapped between these aphids but their relative abundances differed. We also discuss the possible impacts of hyperparasitoids on parasitoid populations. Our results suggest that it would be feasible to implement biocontrol methods for aphids in integrated pest management programmes in peach orchards. There are a number of primary parasitoid species associated with these aphids, and the nearby crops and wild vegetation in the vicinity and within the orchards may provide a suitable habitat for them. Additionally, some of them are commercially available and might be usable in augmentative releases.
- Klíčová slova
- Aphididae, Aphidiinae, IPM, conservation, hyperparasitoids,
- Publikační typ
- časopisecké články MeSH
Species from the genus Paralipsis are obligatory endoparasitoids of root aphids in the Palaearctic. It is known that these species are broadly distributed, parasitizing various aphid hosts and showing great biological and ecological diversity. On the other hand, this group of endoparasitoids is understudied and was thought to be represented by a single species in Europe, viz., Paralipsisenervis (Nees). However, recent description of two new species indicated the possibility of cryptic speciation and recognition of additional Paralipsis species in Europe. In this research, Paralipsis specimens collected during the last 60 years from eight European countries, as well as one sample from Morocco, were subjected to molecular and morphological characterization. Newly designed genus-specific degenerative primers successfully targeted short overlapping fragments of COI of the mitochondrial DNA. Molecular analyses showed clear separation of four independent lineages, two of which are the known species P.enervis and P.tibiator, while two new species are described here, viz., P.brachycaudi Tomanović & Starý, sp. n. and P.rugosa Tomanović & Starý, sp. n. No clear specialization of the taxa to a strict root aphid host has been determined. The recognized mitochondrial lineages were distinct one from another, but with a substantial within-lineage divergence rate, clearly indicating the complexity of this group of parasitoids, on which further research is required in order to clarify the factors triggering their genetic differentiation. We reviewed literature data and new records of Paralipsisenervis aphid host associations and distributions. A key for the identification of all known Paralipsis species is provided and illustrated.
- Klíčová slova
- Paralipsis, Cryptic speciation, Paralipsisbrachycaudi sp. n., Paralipsisrugosa sp. n., molecular phylogeny,
- Publikační typ
- časopisecké články MeSH
Here we tested Aphidius urticae s. str. host-associated lineages from Microlophium carnosum (Buckton), Amphorophora rubi (Kaltenbach), Macrosiphum funestum (Macchiati) and Aulacorthum vaccinii Hille Ris Lambers with the barcoding region of the mitochondrial cytochrome oxidase subunit I gene used to analyse population differences and elucidate phylogenetic relationships between the separated taxa. This molecular marker has been shown to be the most informative molecular marker in resolving species complexes in aphidiine parasitoids. Analyses of the mitochondrial sequences revealed the existence of three clearly separated mitochondrial lineages of A. urticae s. str. group associated with: i) Macrosiphum funestum and Aulacorthum vaccinii aphid hosts, ii) Microlophium carnosum and iii) Amphorophora rubi. This corresponds to the initial descriptions of A. rubi, A. silvaticus and A. urticae and their aphid host associations prior to synonymization of A. rubi and A. silvaticus with A. urticae. On the other hand, significant evolutionary distances ranging from 2.3 to 9.2% between the three mitochondrial lineages were not accompanied by clear morphological differences. Therefore, re-descriptions of A. rubi and A. silvaticus are presented, together with their morphological differentiation in a key, as well as their phylogenetic relationships and genetical differentiation.
- MeSH
- druhová specificita MeSH
- fylogeneze MeSH
- mitochondriální proteiny genetika MeSH
- mšice klasifikace genetika MeSH
- respirační komplex IV genetika MeSH
- sršňovití parazitologie MeSH
- taxonomické DNA čárové kódování MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- mitochondriální proteiny MeSH
- respirační komplex IV MeSH
Specialization is a central concept in ecology and one of the fundamental properties of parasitoids. Highly specialized parasitoids tend to be more efficient in host-use compared to generalized parasitoids, presumably owing to the trade-off between host range and host-use efficiency. However, it remains unknown how parasitoid host specificity and host-use depends on host traits related to susceptibility to parasitoid attack. To address this question, we used data from a 13-year survey of interactions among 142 aphid and 75 parasitoid species in nine European countries. We found that only aphid traits related to local resource characteristics seem to influence the trade-off between host-range and efficiency: more specialized parasitoids had an apparent advantage (higher abundance on shared hosts) on aphids with sparse colonies, ant-attendance and without concealment, and this was more evident when host relatedness was included in calculation of parasitoid specificity. More traits influenced average assemblage specialization, which was highest in aphids that are monophagous, monoecious, large, highly mobile (easily drop from a plant), without myrmecophily, habitat specialists, inhabit non-agricultural habitats and have sparse colonies. Differences in aphid wax production did not influence parasitoid host specificity and host-use. Our study is the first step in identifying host traits important for aphid parasitoid host specificity and host-use and improves our understanding of bottom-up effects of aphid traits on aphid-parasitoid food web structure.
- MeSH
- druhová specificita MeSH
- ekosystém MeSH
- hostitelská specificita MeSH
- Hymenoptera klasifikace fyziologie MeSH
- interakce hostitele a parazita * MeSH
- kvantitativní znak dědičný * MeSH
- mšice klasifikace fyziologie MeSH
- populační dynamika MeSH
- potravní řetězec MeSH
- rostliny parazitologie MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Evropa MeSH
BACKGROUND: Morphological divergence often increases with phylogenetic distance, thus making morphology taxonomically informative. However, transitions to asexual reproduction may complicate this relationship because asexual lineages capture and freeze parts of the phenotypic variation of the sexual populations from which they derive. Parasitoid wasps belonging to the genus Lysiphlebus Foerster (Hymenoptera: Braconidae: Aphidiinae) are composed of over 20 species that exploit over a hundred species of aphid hosts, including many important agricultural pests. Within Lysiphlebus, two genetically and morphologically well-defined species groups are recognised: the "fabarum" and the "testaceipes" groups. Yet within each group, sexual as well as asexual lineages occur, and in L. fabarum different morphs of unknown origin and status have been recognised. In this study, we selected a broad sample of specimens from the genus Lysiphlebus to explore the relationship between genetic divergence, reproductive mode and morphological variation in wing size and shape (quantified by geometric morphometrics). RESULTS: The analyses of mitochondrial and nuclear gene sequences revealed a clear separation between the "testaceipes" and "fabarum" groups of Lysiphlebus, as well as three well-defined phylogenetic lineages within the "fabarum" species group and two lineages within the "testaceipes" group. Divergence in wing shape was concordant with the deep split between the "testaceipes" and "fabarum" species groups, but within groups no clear association between genetic divergence and wing shape variation was observed. On the other hand, we found significant and consistent differences in the shape of the wing between sexual and asexual lineages, even when they were closely related. CONCLUSIONS: Mapping wing shape data onto an independently derived molecular phylogeny of Lysiphlebus revealed an association between genetic and morphological divergence only for the deepest phylogenetic split. In more recently diverged taxa, much of the variation in wing shape was explained by differences between sexual and asexual lineages, suggesting a mechanistic link between wing shape and reproductive mode in these parasitoid wasps.
The present paper represents a contribution to the knowledge of the taxonomy of Monoctonia Starý aphid parasitoids obtained using the barcoding region of the mitochondrial COI gene. We discuss the phylogenetic position of the genus within the subtribe Monoctonina, redescribe known species, and describe Monoctonia japonica sp. n. from Japan in the association Pemphigus matsumurai Monzen/Populus maximowiczii. A key for species identification is provided. Also, we review and discuss the host records, origin, and geographical distribution of Monoctonia species. It is hypothesized that the genus Monoctonia evolved in Paleogene forests of the temperate (and subtropical) belt, most probably in the European part of the Mediterranean region, which is also the center of origin of their host plants.
- MeSH
- anatomické struktury zvířat anatomie a histologie růst a vývoj MeSH
- ekosystém MeSH
- fylogeneze MeSH
- hostitelská specificita MeSH
- rozšíření zvířat MeSH
- sršňovití klasifikace genetika růst a vývoj fyziologie MeSH
- velikost orgánu MeSH
- velikost těla MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
This study provides evidence on integrating the morphological, field, and laboratory data, and application of the cytochrome oxidase subunit I (COI) barcoding gene to the three asexual or sexual Lysiphlebus spp., i.e., Lysiphlebus cardui (Marshall), Lysiphlebus confusus Tremblay and Eady and Lysiphlebus fabarum (Marshall) (Hymenoptera: Braconidae: Aphidiinae). New aphid- invasive plant association, Aphis fabae Scopoli (Hemipreta: Aphididae) on Impatiens glandulifera Royle, has been used in the same model area in the Czech Republic under the same sampling and rearing method for several consecutive years and throughout the season. For molecular identification of these three species, we used DNA sequences of the barcoding region of the mitochondrial COI gene. Although our results confirmed ecological and morphological differences among L. cardui, L. confusus, and L. fabarum, genetic analysis on the basis of COI mitochondrial barcoding gene does not support species status of the mentioned Lysiphlebus taxa. The level of morphological differentiation in these Lysiphlebus Förster species is in accordance with the usual species variability within subfamily Aphidiinae. However, it should be examined how appearance of asexual lineages affects the morphological or genetical variability.
- Klíčová slova
- Aphis fabae, Europe, Impatiens glandulifera, Lysiphlebus, taxonomy,
- MeSH
- ekosystém MeSH
- hostitelská specificita * MeSH
- mšice parazitologie MeSH
- sršňovití anatomie a histologie genetika MeSH
- taxonomické DNA čárové kódování MeSH
- zvířata MeSH
- Check Tag
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Česká republika MeSH