The genera Dolichospermum (Ralfs ex Bornet et Flahault) Wacklin, L. Hoffm. et Komárek and Sphaerospermopsis Zapomělová, Jezberová, Hrouzek, Hisem, K. Řeháková et Komárk.-Legn. represent a highly diversified group of planktonic cyanobacteria that have been recently separated from the traditional genus Anabaena Bory ex Bornet et Flahault. In this study, morphological diversity, phylogeny of the 16S rRNA gene, production of fatty acids, and secondary metabolite profiles were evaluated in 33 strains of 14 morphospecies isolated from the Czech Republic. Clustering of the strains based on 16S rRNA gene sequences corresponded to wider groups of species in terms of morphology. The overall secondary metabolite and fatty acid profiles, however, were not correlated to each other and neither were they correlated to the 16S rRNA phylogeny nor the morphology of the strains. Nevertheless, a minor part of the detected secondary metabolites (19% of all compounds) was present only in close relatives and can be thus considered as autapomorphic features.
- Klíčová slova
- 16S rRNA gene, Anabaena, Dolichospermum, Sphaerospermopsis, cyanobacteria, fatty acids, morphology, phytoplankton, secondary metabolites, taxonomy,
- Publikační typ
- časopisecké články MeSH
We examined the proportions of major Betaproteobacteria subgroups within bacterial communities in diverse nonaxenic, monospecific cultures of algae or cyanobacteria: four species of cryptophyta (genera Cryptomonas and Rhodomonas), four species of chlorophyta (genera Pediastrum, Staurastrum, and Chlamydomonas), and two species of cyanobacteria (genera Dolichospermum and Aphanizomenon). In the cryptophyta cultures, Betaproteobacteria represented 48 to 71% of total bacteria, the genus Limnohabitans represented 18 to 26%, and the Polynucleobacter B subcluster represented 5 to 16%. In the taxonomically diverse chlorophyta group, the genus Limnohabitans accounted for 7 to 45% of total bacteria. In contrast, cyanobacterial cultures contained significantly lower proportions of the Limnohabitans bacteria (1 to 3% of the total) than the cryptophyta and chlorophyta cultures. Notably, largely absent in all of the cultures was Polynucleobacter necessarius (Polynucleobacter C subcluster). Subsequently, we examined the growth of Limnohabitans strains in the presence of different algae or their extracellular products (EPP). Two strains, affiliated with Limnohabitans planktonicus and Limnohabitans parvus, were separately inoculated into axenic cultures of three algal species growing in an inorganic medium: Cryptomonas sp., Chlamydomonas noctigama, and Pediastrum boryanum. The Limnohabitans strains cocultured with these algae or inoculated into their EPP consistently showed (i) pronounced population growth compared to the control without the algae or EPP and (ii) stronger growth stimulation of L. planktonicus than of L. parvus. Overall, growth responses of the Limnohabitans strains cultured with algae were highly species specific, which suggests a pronounced niche separation between two closely related Limnohabitans species likely mediated by different abilities to utilize the substrates produced by different algal species.
- MeSH
- Betaproteobacteria klasifikace genetika růst a vývoj metabolismus MeSH
- Chlorophyta chemie MeSH
- Cryptophyta chemie MeSH
- ekosystém * MeSH
- hybridizace in situ fluorescenční MeSH
- mikrobiologie životního prostředí * MeSH
- sinice chemie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Heterocytous cyanobacteria from various habitats were screened for toxicity to brine shrimp Artemia salina and the murine lymphoblastic cell line Sp/2 in order to compare these two testing models for evaluation of risk posed by cyanobacteria to human health. Methanol extracts of biomass and cultivation media were tested for toxicity and selected extracts were fractionated to determine the active fraction. We found a significant toxic effect to A. salina and to Sp/2 cells in 5.2% and 31% of studied extracts, respectively. Only 8.6% of the tested strains were highly toxic to both A. salina and the Sp/2 cell line, and only two of the tested strains were toxic to A. salina and not to the murine cell line. Therefore, it is likely that the toxic effect of cyanobacterial secondary metabolites mostly targets basal metabolic pathways present in mammal cells and so is not manifested in A. salina. We conclude that it is insufficient to monitor cytotoxicity of cyanobacteria using only the brine shrimp bioassay as was usual in the past, since cytotoxicity is a more frequent feature in cyanobacteria in comparison with toxicity to A. salina. A. salina toxicity test should not be used when estimating the possible health risk for humans. We suggest that in vitro mammal cells be used for these purposes.
- MeSH
- Artemia účinky léků MeSH
- bakteriální toxiny toxicita MeSH
- buněčné linie MeSH
- dlouhověkost účinky léků MeSH
- hodnocení rizik metody MeSH
- larva účinky léků růst a vývoj MeSH
- lymfocyty účinky léků metabolismus MeSH
- mikrocystiny toxicita MeSH
- mořské toxiny toxicita MeSH
- myši MeSH
- reprodukovatelnost výsledků MeSH
- sinice chemie metabolismus MeSH
- testy toxicity MeSH
- toxiny kmene Cyanobacteria MeSH
- viabilita buněk účinky léků MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- srovnávací studie MeSH
- Názvy látek
- bakteriální toxiny MeSH
- mikrocystiny MeSH
- mořské toxiny MeSH
- toxiny kmene Cyanobacteria MeSH
Occurrences of rare cyanobacteria Anabaena reniformis Lemmerm. and Aphanizomenon aphanizomenoides (Forti) Horecká et Komárek were recently detected at several localities in the Czech Republic. Two monoclonal strains of An. reniformis and one strain of Aph. aphanizomenoides were isolated from distant localities and different sampling years. They were characterized by a combination of morphological, genetic, and biochemical approaches. For the first time, partial 16S rRNA gene sequences were obtained for these morphospecies. Based on this gene, all of these strains clustered separately from other planktonic Anabaena and Aphanizomenon strains. They appeared in a cluster with Cylindrospermopsis Seenaya et Subba Raju and Raphidiopsis F. E. Fritsch et M. F. Rich, clustered closely together with two An. kisseleviana Elenkin strains available from GenBank. A new generic entity was defined (Sphaerospermum gen. nov., with the type species S. reniforme, based on the traditional species An. reniformis). These results contribute significantly to the knowledge base about genetic heterogeneity among planktonic Anabaena-like and Aphanizomenon-like morphospecies. Accordingly, the subgenus Dolichospermum, previously proposed for the group of planktonic Anabaena, should be revaluated. Secondary metabolite profiles of the An. reniformis and Aph. aphanizomenoides strains differed considerably from 17 other planktonic Anabaena strains of eight morphospecies isolated from Czech water bodies. Production of puwainaphycin A was found in both of the An. reniformis strains. Despite the relatively short phylogenetic distance from Cylidrospermopsis, the production of cylindrospermopsin was not detected in any of our strains.
- Klíčová slova
- 16S rRNA gene, Anabaena, cyanobacteria, morphology, new genus, phytoplankton, secondary metabolites, taxonomy,
- Publikační typ
- časopisecké články MeSH
In mid-July and August 2003 and 2004, 18 reservoirs in the Czech Republic were sampled for phytoplankton species composition and concentration of intracellular microcystins (MCs). As a consequence of high nutrient loading, most of the reservoirs experienced cyanobacterial blooms of various intensities, with the prevalence of cyanobacteria increasing markedly in August, along with a conspicuous shift in species composition toward dominance of Microcystis spp. Microcystins were detected in 90% of the samples, and their amount also increased considerably in August, reflecting the cyanobacterial biomass. In Microcystis-dominated samples, a significantly higher amount of MCs (p < 0.001) occurred than in samples in which other taxa prevailed. Microcystins were positively correlated with chlorophyll a and cyanobacterial biovolume (p < 0.05, R2 = 0.61 and 0.66, respectively), with the strongest correlation found for Microcystis spp. biovolume (p < 0.001, R2 = 0.87). This taxon was the most important producer of MCs in Czech reservoirs. The main structural variants of MCs were MC-LR, MC-RR, and MC-YR. This study's data also indicate that the relative share of MC variants (MC-LR and MC-RR) varies considerably with time, most likely as a consequence of different species and strain compositions during the summer. This study clearly demonstrates a high prevalence of MC-producing cyanobacteria in Czech reservoirs. Therefore, regular monitoring of these reservoirs is highly desirable in an effort to minimize potential health risks to the human population.
- MeSH
- biomasa MeSH
- cyklické peptidy metabolismus MeSH
- eutrofizace * MeSH
- mikrobiologie vody * MeSH
- mikrocystiny MeSH
- monitorování životního prostředí * MeSH
- populační dynamika MeSH
- roční období MeSH
- sinice růst a vývoj MeSH
- sladká voda chemie mikrobiologie MeSH
- zásobování vodou MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Česká republika MeSH
- Názvy látek
- cyklické peptidy MeSH
- microcystin MeSH Prohlížeč
- mikrocystiny MeSH