Nejvíce citovaný článek - PubMed ID 19320716
Actinobacteria of the acI lineage are the most abundant microbes in freshwater systems, but there are so far no pure living cultures of these organisms, possibly because of metabolic dependencies on other microbes. This, in turn, has hampered an in-depth assessment of the genomic basis for their success in the environment. Here we present genomes from 16 axenic cultures of acI Actinobacteria. The isolates were not only of minute cell size, but also among the most streamlined free-living microbes, with extremely small genome sizes (1.2-1.4 Mbp) and low genomic GC content. Genome reduction in these bacteria might have led to auxotrophy for various vitamins, amino acids and reduced sulphur sources, thus creating dependencies to co-occurring organisms (the 'Black Queen' hypothesis). Genome analyses, moreover, revealed a surprising degree of inter- and intraspecific diversity in metabolic pathways, especially of carbohydrate transport and metabolism, and mainly encoded in genomic islands. The striking genotype microdiversification of acI Actinobacteria might explain their global success in highly dynamic freshwater environments with complex seasonal patterns of allochthonous and autochthonous carbon sources. We propose a new order within Actinobacteria ('Candidatus Nanopelagicales') with two new genera ('Candidatus Nanopelagicus' and 'Candidatus Planktophila') and nine new species.
- MeSH
- Actinobacteria klasifikace genetika izolace a purifikace MeSH
- biodiverzita MeSH
- DNA bakterií chemie MeSH
- fylogeneze MeSH
- genom bakteriální * MeSH
- metabolické sítě a dráhy genetika MeSH
- sladká voda mikrobiologie MeSH
- zastoupení bazí MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- DNA bakterií MeSH
We studied the diversity of Limnohabitans using reverse line blot hybridization with Limnohabitans lineage-specific probes in the freshwater canyon-shaped Římov reservoir (Czech Republic). To examine the succession of distinct lineages, we performed (i) a study of an intensive spring sampling program at the lacustrine part of the Římov reservoir (from ice melt through a phytoplankton peak to the clear-water phase), and (ii) a seasonal study (April to November) when the occurrence of distinct Limnohabitans lineages was related to the inherent longitudinal heterogeneity of the reservoir. Significant spatiotemporal changes in the compositions of distinct Limnohabitans lineages allowed for the identification of "generalists" that were always present throughout the whole season as well as "specialists" that appeared in the reservoir only for limited periods of time or irregularly. Our results indicate that some phytoplankton groups, such as cryptophytes or cyanobacteria, and zooplankton composition were the major factors modulating the distribution and dynamics of distinct Limnohabitans lineages. The highest Limnohabitans diversity was observed during the spring algal bloom, whereas the lowest was during the summer cyanobacterial bloom. The microdiversity also markedly increased upstream in the reservoir, being highest at the inflow, and thus likely reflecting strong influences of the watershed.IMPORTANCE The genus Limnohabitans is a typical freshwater bacterioplankton and is believed to play a significant role in inland freshwater habitats. This work is unique in detecting and tracing different closely related lineages of this bacterial genus in its natural conditions using the semiquantitative reverse line blot hybridization method and in discovering the factors influencing the microdiversity, subtype alternations, and seasonality.
- Klíčová slova
- ITS, Limnohabitans, bacterial diversity, canyon-shaped freshwater reservoir, reverse line blot hybridization, subtypes,
- MeSH
- Comamonadaceae klasifikace genetika izolace a purifikace MeSH
- Cryptophyta růst a vývoj MeSH
- ekosystém MeSH
- eutrofizace MeSH
- fytoplankton růst a vývoj MeSH
- roční období MeSH
- sinice růst a vývoj MeSH
- sladká voda mikrobiologie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Česká republika MeSH
Among abundant freshwater Betaproteobacteria, only few groups are considered to be of central ecological importance. One of them is the well-studied genus Limnohabitans and mainly its R-BT subcluster, investigated previously mainly by fluorescence in situ hybridization methods. We designed, based on sequences from a large Limnohabitans culture collection, 18 RLBH (Reverse Line Blot Hybridization) probes specific for different groups within the genus Limnohabitans by targeting diagnostic sequences on their 16 S-23 S rRNA ITS regions. The developed probes covered in sum 92% of the available isolates. This set of probes was applied to environmental DNA originating from 161 different European standing freshwater habitats to reveal the microdiversity (intra-genus) patterns of the Limnohabitans genus along a pH gradient. Investigated habitats differed in various physicochemical parameters, and represented a very broad range of standing freshwater habitats. The Limnohabitans microdiversity, assessed as number of RLBH-defined groups detected, increased significantly along the gradient of rising pH of habitats. 14 out of 18 probes returned detection signals that allowed predictions on the distribution of distinct Limnohabitans groups. Most probe-defined Limnohabitans groups showed preferences for alkaline habitats, one for acidic, and some seemed to lack preferences. Complete niche-separation was indicated for some of the probe-targeted groups. Moreover, bimodal distributions observed for some groups of Limnohabitans, suggested further niche separation between genotypes within the same probe-defined group. Statistical analyses suggested that different environmental parameters such as pH, conductivity, oxygen and altitude influenced the distribution of distinct groups. The results of our study do not support the hypothesis that the wide ecological distribution of Limnohabitans bacteria in standing freshwater habitats results from generalist adaptations of these bacteria. Instead, our observations suggest that the genus Limnohabitans, as well as its R-BT subgroup, represent ecologically heterogeneous taxa, which underwent pronounced ecological diversification.
- MeSH
- bakteriální RNA genetika MeSH
- biodiverzita * MeSH
- Comamonadaceae fyziologie MeSH
- fyziologická adaptace fyziologie MeSH
- hybridizace in situ fluorescenční MeSH
- koncentrace vodíkových iontů MeSH
- mikrobiologie vody * MeSH
- RNA ribozomální 16S genetika MeSH
- sladká voda mikrobiologie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- bakteriální RNA MeSH
- RNA ribozomální 16S MeSH
Bacteria of the genus Limnohabitans, more precisely the R-BT lineage, have a prominent role in freshwater bacterioplankton communities due to their high rates of substrate uptake and growth, growth on algal-derived substrates and high mortality rates from bacterivory. Moreover, due to their generally larger mean cell volume, compared to typical bacterioplankton cells, they contribute over-proportionally to total bacterioplankton biomass. Here we present genetic, morphological and ecophysiological properties of 35 bacterial strains affiliated with the Limnohabitans genus newly isolated from 11 non-acidic European freshwater habitats. The low genetic diversity indicated by the previous studies using the ribosomal SSU gene highly contrasted with the surprisingly rich morphologies and different patterns in substrate utilization of isolated strains. Therefore, the intergenic spacer between 16S and 23S rRNA genes was successfully tested as a fine-scale marker to delineate individual lineages and even genotypes. For further studies, we propose the division of the Limnohabitans genus into five lineages (provisionally named as LimA, LimB, LimC, LimD and LimE) and also additional sublineages within the most diversified lineage LimC. Such a delineation is supported by the morphology of isolated strains which predetermine large differences in their ecology.
- MeSH
- Betaproteobacteria klasifikace genetika růst a vývoj metabolismus MeSH
- biomasa MeSH
- ekosystém * MeSH
- fylogeneze MeSH
- genetická variace * MeSH
- molekulární sekvence - údaje MeSH
- RNA ribozomální 16S genetika MeSH
- sladká voda mikrobiologie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- RNA ribozomální 16S MeSH
We examined the proportions of major Betaproteobacteria subgroups within bacterial communities in diverse nonaxenic, monospecific cultures of algae or cyanobacteria: four species of cryptophyta (genera Cryptomonas and Rhodomonas), four species of chlorophyta (genera Pediastrum, Staurastrum, and Chlamydomonas), and two species of cyanobacteria (genera Dolichospermum and Aphanizomenon). In the cryptophyta cultures, Betaproteobacteria represented 48 to 71% of total bacteria, the genus Limnohabitans represented 18 to 26%, and the Polynucleobacter B subcluster represented 5 to 16%. In the taxonomically diverse chlorophyta group, the genus Limnohabitans accounted for 7 to 45% of total bacteria. In contrast, cyanobacterial cultures contained significantly lower proportions of the Limnohabitans bacteria (1 to 3% of the total) than the cryptophyta and chlorophyta cultures. Notably, largely absent in all of the cultures was Polynucleobacter necessarius (Polynucleobacter C subcluster). Subsequently, we examined the growth of Limnohabitans strains in the presence of different algae or their extracellular products (EPP). Two strains, affiliated with Limnohabitans planktonicus and Limnohabitans parvus, were separately inoculated into axenic cultures of three algal species growing in an inorganic medium: Cryptomonas sp., Chlamydomonas noctigama, and Pediastrum boryanum. The Limnohabitans strains cocultured with these algae or inoculated into their EPP consistently showed (i) pronounced population growth compared to the control without the algae or EPP and (ii) stronger growth stimulation of L. planktonicus than of L. parvus. Overall, growth responses of the Limnohabitans strains cultured with algae were highly species specific, which suggests a pronounced niche separation between two closely related Limnohabitans species likely mediated by different abilities to utilize the substrates produced by different algal species.
- MeSH
- Betaproteobacteria klasifikace genetika růst a vývoj metabolismus MeSH
- Chlorophyta chemie MeSH
- Cryptophyta chemie MeSH
- ekosystém * MeSH
- hybridizace in situ fluorescenční MeSH
- mikrobiologie životního prostředí * MeSH
- sinice chemie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
The distribution of the phylogenetically narrow R-BT065 cluster (Betaproteobacteria) in 102 freshwater lakes, reservoirs, and various ponds located in central Europe (a total of 122 samples) was examined by using a cluster-specific fluorescence in situ hybridization probe. These habitats differ markedly in pH, conductivity, trophic status, surface area, altitude, bedrock type, and other limnological characteristics. Despite the broad ecological diversity of the habitats investigated, the cluster was detected in 96.7% of the systems, and its occurrence was not restricted to a certain habitat type. However, the relative proportions of the cluster in the total bacterioplankton were significantly lower in humic and acidified lakes than in pH-neutral or alkaline habitats. On average, the cluster accounted for 9.4% of the total bacterioplankton (range, 0 to 29%). The relative abundance and absolute abundance of these bacteria were significantly and positively related to higher pH, conductivity, and the proportion of low-molecular-weight compounds in dissolved organic carbon (DOC) and negatively related to the total DOC and dissolved aromatic carbon contents. Together, these parameters explained 55.3% of the variability in the occurrence of the cluster. Surprisingly, no clear relationship of the R-BT065 bacteria to factors indicating the trophic status of habitats (i.e., different forms of phosphorus and chlorophyll a content) was found. Based on our results and previously published data, we concluded that the R-BT065 cluster represents a ubiquitous, highly active segment of bacterioplankton in nonacidic lakes and ponds and that alga-derived substrates likely form the main pool of substrates responsible for its high growth potential and broad distribution in freshwater habitats.
- MeSH
- Betaproteobacteria klasifikace genetika izolace a purifikace MeSH
- chlorofyl a MeSH
- chlorofyl analýza MeSH
- DNA bakterií chemie MeSH
- ekosystém * MeSH
- Eukaryota genetika MeSH
- fosfor analýza MeSH
- fylogeneze MeSH
- genetická variace MeSH
- hybridizace in situ fluorescenční MeSH
- mikrobiologie vody MeSH
- nadmořská výška MeSH
- počet mikrobiálních kolonií MeSH
- ribozomální DNA genetika MeSH
- RNA ribozomální 16S genetika MeSH
- RNA ribozomální 18S genetika MeSH
- sekvenční analýza DNA MeSH
- shluková analýza MeSH
- skleníkový efekt MeSH
- sladká voda chemie mikrobiologie MeSH
- uhlík analýza MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Evropa MeSH
- Názvy látek
- chlorofyl a MeSH
- chlorofyl MeSH
- DNA bakterií MeSH
- fosfor MeSH
- ribozomální DNA MeSH
- RNA ribozomální 16S MeSH
- RNA ribozomální 18S MeSH
- uhlík MeSH