Nejvíce citovaný článek - PubMed ID 10029531
The structure and biochemical properties of protease inhibitors from the thyropin family are poorly understood in parasites and pathogens. Here, we introduce a novel family member, Ir-thyropin (IrThy), which is secreted in the saliva of Ixodes ricinus ticks, vectors of Lyme borreliosis and tick-borne encephalitis. The IrThy molecule consists of two consecutive thyroglobulin type-1 (Tg1) domains with an unusual disulfide pattern. Recombinant IrThy was found to inhibit human host-derived cathepsin proteases with a high specificity for cathepsins V, K, and L among a wide range of screened cathepsins exhibiting diverse endo- and exopeptidase activities. Both Tg1 domains displayed inhibitory activities, but with distinct specificity profiles. We determined the spatial structure of one of the Tg1 domains by solution NMR spectroscopy and described its reactive center to elucidate the unique inhibitory specificity. Furthermore, we found that the inhibitory potency of IrThy was modulated in a complex manner by various glycosaminoglycans from host tissues. IrThy was additionally regulated by pH and proteolytic degradation. This study provides a comprehensive structure-function characterization of IrThy-the first investigated thyropin of parasite origin-and suggests its potential role in host-parasite interactions at the tick bite site.
- Klíčová slova
- cathepsin, cysteine protease, parasite, protease inhibitor, protein structure, saliva, thyropin, tick,
- MeSH
- cystein MeSH
- glykosaminoglykany MeSH
- kathepsiny metabolismus MeSH
- klíště * metabolismus MeSH
- lidé MeSH
- magnetická rezonanční spektroskopie MeSH
- sliny * metabolismus MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- cystein MeSH
- glykosaminoglykany MeSH
- kathepsiny MeSH
Tick saliva injected into the vertebrate host contains bioactive anti-proteolytic proteins from the cystatin family; however, the molecular basis of their unusual biochemical and physiological properties, distinct from those of host homologs, is unknown. Here, we present Ricistatin, a novel secreted cystatin identified in the salivary gland transcriptome of Ixodes ricinus ticks. Recombinant Ricistatin inhibited host-derived cysteine cathepsins and preferentially targeted endopeptidases, while having only limited impact on proteolysis driven by exopeptidases. Determination of the crystal structure of Ricistatin in complex with a cysteine cathepsin together with characterization of structural determinants in the Ricistatin binding site explained its restricted specificity. Furthermore, Ricistatin was potently immunosuppressive and anti-inflammatory, reducing levels of pro-inflammatory cytokines IL-6, IL-1β, and TNF-α and nitric oxide in macrophages; IL-2 and IL-9 levels in Th9 cells; and OVA antigen-induced CD4+ T cell proliferation and neutrophil migration. This work highlights the immunotherapeutic potential of Ricistatin and, for the first time, provides structural insights into the unique narrow selectivity of tick salivary cystatins determining their bioactivity.
- Klíčová slova
- Cystatins, Host–parasite interactions, Ixodes ricinus, Protease inhibition, Protein structure, Tick saliva,
- MeSH
- cystatiny * farmakologie MeSH
- cystein metabolismus MeSH
- endopeptidasy metabolismus MeSH
- kathepsiny metabolismus MeSH
- klíště * chemie MeSH
- obratlovci MeSH
- proteasy metabolismus MeSH
- slinné cystatiny chemie MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- cystatiny * MeSH
- cystein MeSH
- endopeptidasy MeSH
- kathepsiny MeSH
- proteasy MeSH
- slinné cystatiny MeSH