Nejvíce citovaný článek - PubMed ID 10920194
Arabidopsis (Arabidopsis thaliana) root hairs develop as long tubular extensions from the rootward pole of trichoblasts and exert polarized tip growth. The establishment and maintenance of root hair polarity is a complex process involving the local apical production of reactive oxygen species generated by A. thaliana nicotinamide adenine dinucleotide phosphate (NADPH) oxidase respiratory burst oxidase homolog protein C/ROOT HAIR-DEFECTIVE 2 (AtRBOHC/RHD2). Loss-of-function root hair defective 2 (rhd2) mutants have short root hairs that are unable to elongate by tip growth, and this phenotype is fully complemented by GREEN FLUORESCENT PROTEIN (GFP)-RHD2 expressed under the RHD2 promoter. However, the spatiotemporal mechanism of AtRBOHC/RHD2 subcellular redistribution and delivery to the plasma membrane (PM) during root hair initiation and tip growth are still unclear. Here, we used advanced microscopy for detailed qualitative and quantitative analysis of vesicular compartments containing GFP-RHD2 and characterization of their movements in developing bulges and growing root hairs. These compartments, identified by an independent molecular marker mCherry-VTI12 as the trans-Golgi network (TGN), deliver GFP-RHD2 to the apical PM domain, the extent of which corresponds with the stage of root hair formation. Movements of TGN/early endosomes, but not late endosomes, were affected in the bulging domains of the rhd2-1 mutant. Finally, we revealed that structural sterols might be involved in the accumulation, docking, and incorporation of TGN compartments containing GFP-RHD2 to the apical PM of root hairs. These results help in clarifying the mechanism of polarized AtRBOHC/RHD2 targeting, maintenance, and recycling at the apical PM domain, coordinated with different developmental stages of root hair initiation and growth.
- MeSH
- Arabidopsis genetika růst a vývoj MeSH
- buněčná membrána genetika metabolismus MeSH
- genetická variace MeSH
- genotyp MeSH
- kořeny rostlin genetika růst a vývoj MeSH
- mutace MeSH
- organogeneze rostlin genetika MeSH
- regulace genové exprese u rostlin MeSH
- rostlinné geny MeSH
- trichomy genetika růst a vývoj MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- srovnávací studie MeSH
Annexin 1 (ANN1) is the most abundant member of the evolutionary conserved multigene protein superfamily of annexins in plants. Generally, annexins participate in diverse cellular processes, such as cell growth, differentiation, vesicle trafficking, and stress responses. The expression of annexins is developmentally regulated, and it is sensitive to the external environment. ANN1 is expressed in almost all Arabidopsis tissues, while the most abundant is in the root, root hairs, and in the hypocotyl epidermal cells. Annexins were also occasionally proposed to associate with cytoskeleton and vesicles, but they were never developmentally localized at the subcellular level in diverse plant tissues and organs. Using advanced light-sheet fluorescence microscopy (LSFM), we followed the developmental and subcellular localization of GFP-tagged ANN1 in post-embryonic Arabidopsis organs. By contrast to conventional microscopy, LSFM allowed long-term imaging of ANN1-GFP in Arabidopsis plants at near-environmental conditions without affecting plant viability. We studied developmental regulation of ANN1-GFP expression and localization in growing Arabidopsis roots: strong accumulation was found in the root cap and epidermal cells (preferentially in elongating trichoblasts), but it was depleted in dividing cells localized in deeper layers of the root meristem. During root hair development, ANN1-GFP accumulated at the tips of emerging and growing root hairs, which was accompanied by decreased abundance in the trichoblasts. In aerial plant parts, ANN1-GFP was localized mainly in the cortical cytoplasm of trichomes and epidermal cells of hypocotyls, cotyledons, true leaves, and their petioles. At the subcellular level, ANN1-GFP was enriched at the plasma membrane (PM) and vesicles of non-dividing cells and in mitotic and cytokinetic microtubular arrays of dividing cells. Additionally, an independent immunolocalization method confirmed ANN1-GFP association with mitotic and cytokinetic microtubules (PPBs and phragmoplasts) in dividing cells of the lateral root cap. Lattice LSFM revealed subcellular accumulation of ANN1-GFP around the nuclear envelope of elongating trichoblasts. Massive relocation and accumulation of ANN1-GFP at the PM and in Hechtian strands and reticulum in plasmolyzed cells suggest a possible osmoprotective role of ANN1-GFP during plasmolysis/deplasmolysis cycle. This study shows complex developmental and subcellular localization patterns of ANN1 in living Arabidopsis plants.