Nejvíce citovaný článek - PubMed ID 11241839
Because of the deep involvement of granulosa cells in the processes surrounding the cycles of menstruation and reproduction, there is a great need for a deeper understanding of the ways in which they function during the various stages of those cycles. One of the main ways in which the granulosa cells influence the numerous sex associated processes is hormonal interaction. Expression of steroid sex hormones influences a range of both primary and secondary sexual characteristics, as well as regulate the processes of oogenesis, folliculogenesis, ovulation, and pregnancy. Understanding of the exact molecular mechanisms underlying those processes could not only provide us with deep insight into the regulation of the reproductive cycle, but also create new clinical advantages in detection and treatment of various diseases associated with sex hormone abnormalities. We have used the microarray approach validated by RT-qPCR, to analyze the patterns of gene expression in primary cultures of human granulosa cells at days 1, 7, 15, and 30 of said cultures. We have especially focused on genes belonging to ontology groups associated with steroid biosynthesis and metabolism, namely "Regulation of steroid biosynthesis process" and "Regulation of steroid metabolic process". Eleven genes have been chosen, as they exhibited major change under a culture condition. Out of those, ten genes, namely STAR, SCAP, POR, SREBF1, GFI1, SEC14L2, STARD4, INSIG1, DHCR7, and IL1B, belong to both groups. Patterns of expression of those genes were analyzed, along with brief description of their functions. That analysis helped us achieve a better understanding of the exact molecular processes underlying steroid biosynthesis and metabolism in human granulosa cells.
- Klíčová slova
- granulosa cells, human, in vitro culture (IVC), steroid biosynthesis,
- MeSH
- buněčné kultury metody MeSH
- folikulární buňky cytologie metabolismus MeSH
- genové regulační sítě MeSH
- kultivované buňky MeSH
- lidé MeSH
- metabolické sítě a dráhy * MeSH
- regulace genové exprese MeSH
- sekvenční analýza hybridizací s uspořádaným souborem oligonukleotidů MeSH
- stanovení celkové genové exprese metody MeSH
- steroidy biosyntéza MeSH
- Check Tag
- lidé MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- steroidy MeSH
Smith-Lemli-Opitz syndrome (SLOS) is an autosomal recessive metabolic disorder. SLOS is caused by the mutations in the gene for 3beta-hydroxysterol Delta(7) reductase (DHCR7; EC 1.3.1.21), which maps to chromosome 11q12-13. DHCR7 catalyses the final step in cholesterol biosynthesis-the reduction of 7-dehydrocholesterol to cholesterol. Clinical severity ranges from mild dysmorphism to severe congenital malformation and intrauterine lethality. Pregnant women are offered a biochemical screening test for Down syndrome in the second trimester, where the suspicion for SLOS could be registered, when the unconjugated estriol (uE3) level appears low. A group of 456 fetuses with a high risk for SLOS were examined by DNA analysis. We confirmed SLOS in 5 fetuses and 11 fetuses were carriers. One novel mutation (p.G30A) was detected. The most frequently found mutations, c.964-1G > C and p.W151X, are also the most severe ones. At least one of these mutations was detected in each fetus with SLOS. This suggests that the biochemical screening of pregnant women probably uncovers mainly more severely affected fetuses. We confirmed SLOS also in two patients whose prenatal screening was negative. Both of them had nonsense mutation on one allele. It stands to reason that some modifying factors may play a role in the reduction of the uE3 level in the mother's serum.
- MeSH
- alely MeSH
- biochemie metody MeSH
- genotyp MeSH
- heterozygot MeSH
- komplikace těhotenství * MeSH
- lidé MeSH
- mutace MeSH
- mutační analýza DNA MeSH
- nesmyslný kodon MeSH
- plošný screening metody MeSH
- riziko MeSH
- Smithův-Lemliho-Opitzův syndrom diagnóza genetika MeSH
- těhotenství MeSH
- Check Tag
- lidé MeSH
- těhotenství MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Česká republika MeSH
- Názvy látek
- nesmyslný kodon MeSH