Nejvíce citovaný článek - PubMed ID 11323033
Image-based root phenotyping technologies, including the minirhizotron (MR), have expanded our understanding of the in situ root responses to changing environmental conditions. The conventional manual methods used to analyze MR images are time-consuming, limiting their implementation. This study presents an adaptation of our previously developed convolutional neural network-based models to estimate the total (cumulative) root length (TRL) per MR image without requiring segmentation. Training data were derived from manual annotations in Rootfly, commonly used software for MR image analysis. We compared TRL estimation with 2 models, a regression-based model and a detection-based model that detects the annotated points along the roots. Notably, the detection-based model can assist in examining human annotations by providing a visual inspection of roots in MR images. The models were trained and tested with 4,015 images acquired using 2 MR system types (manual and automated) and from 4 crop species (corn, pepper, melon, and tomato) grown under various abiotic stresses. These datasets are made publicly available as part of this publication. The coefficients of determination (R2), between the measurements made using Rootfly and the suggested TRL estimation models were 0.929 to 0.986 for the main datasets, demonstrating that this tool is accurate and robust. Additional analyses were conducted to examine the effects of (a) the data acquisition system and thus the image quality on the models' performance, (b) automated differentiation between images with and without roots, and (c) the use of the transfer learning technique. These approaches can support precision agriculture by providing real-time root growth information.
- Publikační typ
- časopisecké články MeSH
In the context of a recent massive increase in research on plant root functions and their impact on the environment, root ecologists currently face many important challenges to keep on generating cutting-edge, meaningful and integrated knowledge. Consideration of the below-ground components in plant and ecosystem studies has been consistently called for in recent decades, but methodology is disparate and sometimes inappropriate. This handbook, based on the collective effort of a large team of experts, will improve trait comparisons across studies and integration of information across databases by providing standardised methods and controlled vocabularies. It is meant to be used not only as starting point by students and scientists who desire working on below-ground ecosystems, but also by experts for consolidating and broadening their views on multiple aspects of root ecology. Beyond the classical compilation of measurement protocols, we have synthesised recommendations from the literature to provide key background knowledge useful for: (1) defining below-ground plant entities and giving keys for their meaningful dissection, classification and naming beyond the classical fine-root vs coarse-root approach; (2) considering the specificity of root research to produce sound laboratory and field data; (3) describing typical, but overlooked steps for studying roots (e.g. root handling, cleaning and storage); and (4) gathering metadata necessary for the interpretation of results and their reuse. Most importantly, all root traits have been introduced with some degree of ecological context that will be a foundation for understanding their ecological meaning, their typical use and uncertainties, and some methodological and conceptual perspectives for future research. Considering all of this, we urge readers not to solely extract protocol recommendations for trait measurements from this work, but to take a moment to read and reflect on the extensive information contained in this broader guide to root ecology, including sections I-VII and the many introductions to each section and root trait description. Finally, it is critical to understand that a major aim of this guide is to help break down barriers between the many subdisciplines of root ecology and ecophysiology, broaden researchers' views on the multiple aspects of root study and create favourable conditions for the inception of comprehensive experiments on the role of roots in plant and ecosystem functioning.
- Klíčová slova
- below-ground ecology, handbook, plant root functions, protocol, root classification, root ecology, root traits, trait measurements,
- MeSH
- databáze faktografické MeSH
- ekologie MeSH
- ekosystém * MeSH
- fenotyp MeSH
- rostliny * MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
High-throughput root phenotyping in the soil became an indispensable quantitative tool for the assessment of effects of climatic factors and molecular perturbation on plant root morphology, development and function. To efficiently analyse a large amount of structurally complex soil-root images advanced methods for automated image segmentation are required. Due to often unavoidable overlap between the intensity of fore- and background regions simple thresholding methods are, generally, not suitable for the segmentation of root regions. Higher-level cognitive models such as convolutional neural networks (CNN) provide capabilities for segmenting roots from heterogeneous and noisy background structures, however, they require a representative set of manually segmented (ground truth) images. Here, we present a GUI-based tool for fully automated quantitative analysis of root images using a pre-trained CNN model, which relies on an extension of the U-Net architecture. The developed CNN framework was designed to efficiently segment root structures of different size, shape and optical contrast using low budget hardware systems. The CNN model was trained on a set of 6465 masks derived from 182 manually segmented near-infrared (NIR) maize root images. Our experimental results show that the proposed approach achieves a Dice coefficient of 0.87 and outperforms existing tools (e.g., SegRoot) with Dice coefficient of 0.67 by application not only to NIR but also to other imaging modalities and plant species such as barley and arabidopsis soil-root images from LED-rhizotron and UV imaging systems, respectively. In summary, the developed software framework enables users to efficiently analyse soil-root images in an automated manner (i.e. without manual interaction with data and/or parameter tuning) providing quantitative plant scientists with a powerful analytical tool.
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH