Nejvíce citovaný článek - PubMed ID 11504450
Interaction of benzo[c]phenanthridine and protoberberine alkaloids with animal and yeast cells
Defects in cell death signaling pathways are one of the hallmarks of cancer and can lead to resistance to conventional therapy. Natural products are promising compounds that can overcome this resistance. In the present study we studied the effect of six quaternary benzophenanthridine alkaloids (QBAs), sanguinarine, chelerythrine, sanguirubine, chelirubine, sanguilutine, and chelilutine, on Jurkat leukemia cells, WT, and cell death deficient lines derived from them, CASP3/7/6-/- and FADD-/-, and on solid tumor, human malignant melanoma, A375 cells. We demonstrated the ability of QBAs to overcome the resistance of these deficient cells and identified a novel mechanism for their action. Sanguinarine and sanguirubine completely and chelerythrine, sanguilutine, and chelilutine partially overcame the resistance of CASP3/7/6-/- and FADD-/- cells. By detection of cPARP, a marker of apoptosis, and pMLKL, a marker of necroptosis, we proved the ability of QBAs to induce both these cell deaths (bimodal cell death) with apoptosis preceding necroptosis. We identified the new mechanism of the cell death induction by QBAs, the downregulation of the apoptosis inhibitors cIAP1 and cIAP2, i.e., an effect similar to that of Smac mimetics.
- Klíčová slova
- Smac mimetic drug resistance, apoptosis, benzophenanthridine alkaloids, cIAP, cancer, cell death, chelerythrine, sanguinarine,
- MeSH
- alkaloidy * farmakologie metabolismus MeSH
- apoptóza * MeSH
- benzofenantridiny farmakologie MeSH
- kaspasa 3 metabolismus MeSH
- lidé MeSH
- nádorové buněčné linie MeSH
- signální transdukce MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- alkaloidy * MeSH
- benzofenantridiny MeSH
- kaspasa 3 MeSH
Quaternary benzo[c]phenanthridine alkaloids are secondary metabolites of the plant families Papaveraceae, Rutaceae, and Ranunculaceae with anti-inflammatory, antifungal, antimicrobial and anticancer activities. Their spectral changes induced by the environment could be used to understand their interaction with biomolecules as well as for analytical purposes. Spectral shifts, quantum yield and changes in lifetime are presented for the free form of alkaloids in solvents of different polarity and for alkaloids bound to DNA. Quantum yields range from 0.098 to 0.345 for the alkanolamine form and are below 0.033 for the iminium form. Rise of fluorescence lifetimes (from 2-5 ns to 3-10 ns) and fluorescence intensity are observed after binding of the iminium form to the DNA for most studied alkaloids. The alkanolamine form does not bind to DNA. Acid-base equilibrium constant of macarpine is determined to be 8.2-8.3. Macarpine is found to have the highest increase of fluorescence upon DNA binding, even under unfavourable pH conditions. This is probably a result of its unique methoxy substitution at C12 a characteristic not shared with other studied alkaloids. Association constant for macarpine-DNA interaction is 700000 M(-1).
- MeSH
- alkaloidy chemie MeSH
- benzofenantridiny chemie MeSH
- DNA chemie MeSH
- rozpouštědla chemie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- alkaloidy MeSH
- benzofenantridiny MeSH
- DNA MeSH
- rozpouštědla MeSH
Macleaya microcarpa (Maxim.) Fedde belongs to the genus Macleaya, family Papaveraceae. Together with the better known and more frequently studied species M. cordata (Willd.) R. Br. it is a main source of quaternary benzo[c]phenanthridine alkaloids. Using HPLC we determined the content of eight isoquinoline alkaloids in the aerial and underground parts of 1-, 2-, 12- and 13-year old plants and followed their changes during the vegetative period. The dominant alkaloid of all samples collected in the end of this period was allocryptopine (3.8-13.6 mg/g for aerial parts, 24.2-48.9 mg/g for underground parts). Chelerythrine, sanguinarine and protopine were also present in both parts of the plant. Additionally, measurable concentrations of chelilutine (CL), chelirubine (CR), macarpine (MA) and sanguirubine (SR) were detected in underground parts. The most important finding was that contents of CR, CL, SR and MA in the 12- and 13-year old plant roots were significantly higher (approximately 3-fold for CR, 6-fold for CL, 5-fold for SR, and at least 14-fold for MA) than in 1- or 2-year old plants. The proportion of individual alkaloids in aerial and underground parts thus changed significantly during the vegetative period.
- MeSH
- alkaloidy chemie MeSH
- Papaveraceae chemie MeSH
- roční období * MeSH
- vysokoúčinná kapalinová chromatografie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- alkaloidy MeSH