Most cited article - PubMed ID 11803026
Flavonoids-potent and versatile biologically active compounds interacting with cytochromes P450
We investigated gender-related differences in the ability of selected flavonoids and phenolic compounds to modify porcine hepatic CYP450-dependent activity. Using pools of microsomes from male and female pigs, the inhibition of the CYP families 1A, 2A, 2E1, and 3A was determined. The specific CYP activities were measured in the presence of the following selected compounds: rutin, myricetin, quercetin, isorhamnetin, p-coumaric acid, gallic acid, and caffeic acid. We determined that myricetin and isorhamnetin competitively inhibited porcine CYP1A activity in the microsomes from both male and female pigs but did not affect the CYP2A and CYP2E1. Additionally, isorhamnetin competitively inhibited CYP3A in both genders. Noncompetitive inhibition of CYP3A activity by myricetin was observed only in the microsomes from male pigs, whereas CYP3A in female pigs was not affected. Quercetin competitively inhibited CYP2E1 and CYP1A activity in the microsomes from male pigs and irreversibly CY3A in female pigs. No effect of quercetin on CYP2E1 was observed in the microsomes from female pigs. Neither phenolic acids nor rutin affected CYP450 activities. Taken together, our results suggest that the flavonoids myricetin, isorhamnetin, and quercetin may affect the activities of porcine CYP1A, CYP3A, and CYP2E1 in a gender-dependent manner.
- MeSH
- Cytochrome P-450 Enzyme Inhibitors pharmacology MeSH
- Microsomes, Liver enzymology MeSH
- Sex Characteristics * MeSH
- Swine MeSH
- Cytochrome P-450 Enzyme System metabolism MeSH
- Animals MeSH
- Check Tag
- Male MeSH
- Female MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Cytochrome P-450 Enzyme Inhibitors MeSH
- Cytochrome P-450 Enzyme System MeSH
Anthocyanins are plant pigments occurring in flowers and berry fruits. Since a phenomenon of food-drug interactions is increasingly emerging, we examined the effects of 21 major anthocyanins and the extracts from 3 food supplements containing anthocyanins on the aryl hydrocarbon receptor (AhR)-cytochrome P450 CYP1A1 signaling pathway in human hepatocytes and human hepatic HepG2 and intestinal LS174T cancer cells. Pelargonidin-3-O-rutinoside (PEL-2) and cyanidin-3,5-O-diglucoside (CYA-3) dose-dependently activated AhR, as revealed by gene reporter assay. PEL-2 and CYA-3 induced CYP1A1 mRNA but not protein in HepG2 and LS174T cells. Neither compounds induced CYP1A1 mRNA and protein in four different primary human hepatocytes cultures. The effects of PEL-2 and CYA-3 on AhR occurred by ligand-dependent and ligand-independent mechanisms, respectively, as demonstrated by ligand binding assay. In a direct enzyme inhibition assay, none of the antocyanins tested inhibited the CYP1A1 marker activity to less than 50% even at 100 μM concentration. PEL-2 and CYA-3 at 100 μM inhibited CYP1A1 to 79% and 65%, respectively. In conclusion, with exception of PEL-2 and CYA-3, there were no effects of 19 major anthocyanins and 3 food supplements containing anthocyanins on AhR-CYP1A1 signaling, implying zero potential of these compounds for food-drug interactions with respect to AhR-CYP1A1 pathway.
- Keywords
- 2,3,7,8-tetrachlorodibenzo-p-dioxin, AhR, Anthocyanins, Aryl hydrocarbon receptor, Cytochrome P450, Food supplements, Food–drug interactions, TCDD, aryl hydrocarbon receptor,
- MeSH
- Anthocyanins chemistry toxicity MeSH
- Hep G2 Cells MeSH
- Cytochrome P-450 CYP1A1 metabolism MeSH
- Adult MeSH
- Glucosides chemistry toxicity MeSH
- Hepatocytes drug effects metabolism MeSH
- Enzyme Inhibitors toxicity MeSH
- Food-Drug Interactions MeSH
- Microsomes, Liver drug effects enzymology MeSH
- Middle Aged MeSH
- Humans MeSH
- Dietary Supplements MeSH
- Receptors, Aryl Hydrocarbon drug effects metabolism MeSH
- Gene Expression Regulation, Enzymologic drug effects MeSH
- Signal Transduction drug effects MeSH
- Protein Binding MeSH
- Cell Survival drug effects MeSH
- Check Tag
- Adult MeSH
- Middle Aged MeSH
- Humans MeSH
- Male MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Research Support, N.I.H., Extramural MeSH
- Names of Substances
- Anthocyanins MeSH
- cyanidin-3-O-beta-glucopyranoside MeSH Browser
- Cytochrome P-450 CYP1A1 MeSH
- Glucosides MeSH
- Enzyme Inhibitors MeSH
- pelargonidin MeSH Browser
- Receptors, Aryl Hydrocarbon MeSH
We examined the effects of anthocyanidins (cyanidin, delphinidin, malvidin, peonidin, petunidin, pelargonidin) on the aryl hydrocarbon receptor (AhR)-CYP1A1 signaling pathway in human hepatocytes, hepatic HepG2 and intestinal LS174T cancer cells. AhR-dependent reporter gene expression in transfected HepG2 cells was increased by pelargonidin in a concentration-dependent manner at 24h. Similarly, pelargonidin induced the expression of CYP1A1 mRNA up to 5-fold in HepG2 and LS174T cells relative to the induction by 5 nM 2,3,7,8-tetrachlorodibenzodioxin (TCDD), the most potent activator of AhR. CYP1A1 and CYP1A2 mRNAs were also increased by pelargonidin in three primary human hepatocytes cultures (approximately 5% of TCDD potency) and the increase in CYP1A1 protein in HepG2 and LS174T cells was comparable to the increase in catalytic activity of CYP1A1 enzyme. Ligand binding analysis demonstrated that pelargonidin was a weak ligand of AhR. Enzyme kinetic analyses using human liver microsomes revealed inhibition of CYP1A1 activity by delphinidin (IC50 78 μM) and pelargonidin (IC50 33 μM). Overall, although most anthocyanidins had no effects on AhR-CYP1A1 signaling, pelargonidin can bind to and activate the AhR and AhR-dependent gene expression, and pelargonidin and delphinidin inhibit the CYP1A1 catalytic activity.
- MeSH
- Transcriptional Activation drug effects MeSH
- Anthocyanins pharmacology MeSH
- Hep G2 Cells MeSH
- Cytochrome P-450 CYP1A1 biosynthesis MeSH
- Enzyme Induction MeSH
- Hepatocytes drug effects enzymology MeSH
- Microsomes, Liver enzymology MeSH
- Kinetics MeSH
- Humans MeSH
- Ligands MeSH
- RNA, Messenger biosynthesis MeSH
- Liver Neoplasms enzymology MeSH
- Polychlorinated Dibenzodioxins pharmacology MeSH
- Primary Cell Culture MeSH
- Promoter Regions, Genetic drug effects MeSH
- Receptors, Aryl Hydrocarbon drug effects metabolism MeSH
- Signal Transduction drug effects MeSH
- Intestinal Neoplasms enzymology MeSH
- Transfection MeSH
- Basic Helix-Loop-Helix Transcription Factors drug effects metabolism MeSH
- Dose-Response Relationship, Drug MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Research Support, N.I.H., Extramural MeSH
- Names of Substances
- AHR protein, human MeSH Browser
- Anthocyanins MeSH
- CYP1A1 protein, human MeSH Browser
- Cytochrome P-450 CYP1A1 MeSH
- Ligands MeSH
- RNA, Messenger MeSH
- pelargonidin MeSH Browser
- Polychlorinated Dibenzodioxins MeSH
- Receptors, Aryl Hydrocarbon MeSH
- Basic Helix-Loop-Helix Transcription Factors MeSH
In recent years, the consumption and use of dietary supplements containing concentrated phytochemicals (e.g. flavonoids) increased dramatically. Flavonoids, as foreign compounds (xenobiotics), have great potential to modulate the activity of cytochrome P450s (CYPs), xenobiotic-metabolizing enzymes involved in the activation and detoxification of food and environmental carcinogens. Thus, the aim of this study was to investigate the effects of model glycosylated and deglycosylated flavonoids on CYPs in rat liver and small intestine, as the two main organs responsible for xenobiotic metabolism, after p.o. administration by gastric gavages. The effects of two glycosylated flavonoids (isoquercitrin, rutin) and their aglycone (quercetin) on CYPs were determined using Western blotting technique and specific activity assays with alkyl-resorufin derivatives. In liver microsomes, a considerable increase of all the measured marker activities (EROD, MROD, PROD) was observed only after isoquercitrin treatment. To evaluate the effects of flavonoids on CYPs along small intestine, the tissue was dissected into proximal (near pylorus), middle and distal parts. Of all the tested compounds, isoquercitrin was the most efficient CYP inducer, namely in the middle part of small intestine. Obtained data demonstrate the different effects of flavonoid glycosides and aglycone on CYP expression in rat liver and small intestine. Since these phytochemicals are xenobiotics, and thus they can increase the human risk of cancer development, their consumption in large quantities should be carefully considered.
- Keywords
- cytochrome P450, flavonoids, induction, liver, small intestine,
- Publication type
- Journal Article MeSH
About biological affecting of flavonoids on animal organisms is known less,thus we selected flavonoids, flavanones and flavones, and their glycosides, which wereexamined as potential inducers of cytochrome(s) P450 when administrated by gavages intoexperimental male rats. The study was focused on induction of CYP1A1, the majorcytochrome P450 involved in carcinogen activation. The data obtained demonstrate thenecessity of taking into account not only ability of flavonoids to bind to Ah receptor(induction factor) but also to concentrate on their distribution and metabolism (includingcolon microflora) in the body. After that we examined certain flavonoids as potential inducers of cytochrome P450, we wanted to suggest and optimize suitable electrochemical technique for determination of selected flavonoids (quercetin, quercitrin, rutin, chrysin and diosmin) in body liquids. For these purposes, we selected square wave voltannetry using carbon paste electrode. Primarily we aimed on investigation of their basic electrochemical behaviour. After that we have optimized frequency, step potential and supporting electrolyte. Based on the results obtained, we selected the most suitable conditions for determination of the flavonoids as follows: frequency 180 Hz, step potential 1.95 mV/s and phosphate buffer of pH 7 as supporting electrolyte. Detection limits (3 S/N) of the flavonoids were from units to tens of nM except diosmin, where the limit were higher than μM. In addition, we attempted to suggest a sensor for analysis of flavonoids in urine. It clearly follows from the results obtained that flavonoids can be analysed in the presence of animal urine, because urine did not influence much the signals of flavonoids (recoveries of the signals were about 90 %).
- Keywords
- antioxidant, cancer, carbon paste electrode, cytochrome P450, flavonoids, square wave voltammetry, western blot analysis,
- Publication type
- Journal Article MeSH