Most cited article - PubMed ID 12094737
Decolorization of industrial dyes by a Brazilian strain of Pleurotus pulmonarius producing laccase as the sole phenol-oxidizing enzyme
The production of ligninolytic enzymes (laccase and Mn-dependent peroxidase) by the white-rot fungus Pleurotus pulmonarius (FR.) Quélet was studied in solid-state cultures using agricultural and food wastes as substrate. The highest activities of laccase were found in wheat bran (2,860 ± 250 U/L), pineapple peel (2,450 ± 230 U/L), and orange bagasse (2,100 ± 270 U/L) cultures, all of them at an initial moisture level of 85 %. The highest activities of Mn peroxidase were obtained in pineapple peel cultures (2,200 ± 205 U/L) at an initial moisture level of 75 %. In general, the condition of high initial moisture level (80-90 %) was the best condition for laccase activity, while the best condition for Mn peroxidase activity was cultivation at low initial moisture (50-70 %). Cultures containing high Mn peroxidase activities were more efficient in the decolorization of the industrial dyes remazol brilliant blue R (RBBR), Congo red, methylene blue, and ethyl violet than those containing high laccase activity. Also, crude enzymatic extracts with high Mn peroxidase activity were more efficient in the in vitro decolorization of methylene blue, ethyl violet, and Congo red. The dye RBBR was efficiently decolorized by both crude extracts, rich in Mn peroxidase activity or rich in laccase activity.
- MeSH
- Coloring Agents metabolism MeSH
- Biotransformation MeSH
- Culture Media MeSH
- Laccase metabolism MeSH
- Peroxidases metabolism MeSH
- Pleurotus enzymology MeSH
- Industrial Waste MeSH
- Agriculture MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Coloring Agents MeSH
- Culture Media MeSH
- Laccase MeSH
- manganese peroxidase MeSH Browser
- Peroxidases MeSH
- Industrial Waste MeSH
The potential use of fungal pellets for decolorization of the textile dyeing wastewater was evaluated. The live pellets of the fungus Phanerochaete chrysosporium were found to remove more than 95% of the color of this wastewater within 1 d. The dye-removal capacity was a function of time and was proportional to the agitation rate; the optimum temperature was 30 degrees C. Both live and dead pellets were further examined in a repeated-batch mode for 5 d. The decolorization performance of live pellets remained high and stable for 5 d and they showed twice to thrice higher decolorization capacity than dead pellets.
- MeSH
- Biodegradation, Environmental MeSH
- Water Pollutants, Chemical metabolism MeSH
- Indoles metabolism MeSH
- Phanerochaete metabolism MeSH
- Textile Industry methods MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Water Pollutants, Chemical MeSH
- indirubin MeSH Browser
- Indoles MeSH
Molasses wastewater (vinasse; the by-product of distillation of fermented sugar) was decolorized and its chemical oxygen demand (COD) was reduced in static cultivation using the fungi Coriolus versicolor, Funalia trogii, Phanerochaete chrysosporium and Pleurotus pulmonarius ('Pleurotus sajorcaju'). The effect of cotton stalk on decolorizing and COD removing capability of four fungi was determined. In the entire concentration range tested (10-30%), wastewater was effectively decolorized by C. versicolor and F. trogii. Cotton stalk addition stimulated the decolorization activity of all fungi. The utilization of cotton stalk represents several advantages due to its function as an attachment place and as a source of nutrients; its use also reduces process costs.
- MeSH
- Color MeSH
- Biodegradation, Environmental * MeSH
- Fermentation MeSH
- Fungi metabolism MeSH
- Molasses * MeSH
- Water Microbiology MeSH
- Waste Disposal, Fluid MeSH
- Pleurotus metabolism MeSH
- Polyporales metabolism MeSH
- Industrial Waste * MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Industrial Waste * MeSH
The production of laccase in liquid cultures of the white-rot fungus Pleurotus ostreatus was highly variable. During the first days of cultivation, the relative variability was as high as 80-100% and it decreased to 30% in the course of cultivation. The main source of variability was assumed to be the independent development of enzyme activity in individual cultures. Cultures with high laccase production showed also high production of the other ligninolytic enzyme--Mn-dependent peroxidase. The variability was probably due to the source of inoculum, deactivation of the enzyme in culture liquid and genetic variations among the cultures. Variability of laccase activities was lower during solid-state fermentation on wheat straw and during the growth in nonsterile soil.
- MeSH
- Fermentation MeSH
- Culture Media MeSH
- Laccase MeSH
- Mycology methods MeSH
- Oxidoreductases biosynthesis metabolism MeSH
- Pleurotus enzymology growth & development MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Culture Media MeSH
- Laccase MeSH
- Oxidoreductases MeSH
Laccase activity in Trichoderma harzianum and in our own isolate Trichoderma atroviride was correlated with the production of the green pigment in conidial spores. The laccases of the two fungal species exhibit comparable kinetic parameters, pH optima and thermal sensitivity but differed in physiological properties, such as their catalytic activity during growth.
- MeSH
- Kinetics MeSH
- Hydrogen-Ion Concentration MeSH
- Laccase MeSH
- Oxidoreductases chemistry metabolism MeSH
- Spores, Fungal enzymology growth & development MeSH
- Temperature MeSH
- Trichoderma enzymology growth & development MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Laccase MeSH
- Oxidoreductases MeSH
The kinetics of phenol degradation was estimated in a fed-batch reactor system. Effects of oxygen and nutrient excess or limitation as well as the presence of several essential ions on the phenol- and oxygen-specific uptake rates achieved simultaneously in a bioreactor were shown. Candida tropicalis was grown on phenol as the only carbon and energy source. Applying the best fit of polynomial function, the maximum specific uptake rates of phenol and oxygen, the critical concentrations of phenol, the half-saturation constants and inhibition constants were determined. Linear relationship between specific phenol uptake rate and the exogenous respiration rate was found regardless of the kind and presence of essential nutrients. At oxygen limitation both the phenol uptake rate and the cell affinity to phenol decreased more strongly compared with those under nutrient limitation. Oxygen in excess resulted in a significant increase of cell tolerance toward phenol. The presence of essential nutrients increased the specific phenol degradation rate and led to complete phenol oxidation.
- MeSH
- Biodegradation, Environmental MeSH
- Bioreactors MeSH
- Candida tropicalis metabolism MeSH
- Water Pollutants, Chemical metabolism MeSH
- Phenol metabolism MeSH
- Kinetics MeSH
- Oxygen metabolism MeSH
- Least-Squares Analysis MeSH
- Oxidation-Reduction MeSH
- Oxygen Consumption MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Water Pollutants, Chemical MeSH
- Phenol MeSH
- Oxygen MeSH
The ability to decolorize four synthetic dyes (Phenol Red, Evans Blue, Eosin Yellowish and Poly B411) in five Pleurotus ostreatus strains (a parental strain and four isolates derived from it) was determined. Two of the isolates had markedly higher and other two substantially lower production of ligninolytic enzymes and hydrogen peroxide than the parental strain. Like the parental strain, the higher-producing isolates were able to decolorize all the tested dyes, but not to a higher extent than the parental strain. In contrast, two lower-producing isolates exhibited slow decolorization, which was incomplete even at the end of cultivation. Evans Blue and Eosin Yellowish strongly suppressed the growth of the strains, while Phenol Red and Poly B411 induced none or only a very slight growth reduction.
- MeSH
- Color MeSH
- Coloring Agents metabolism MeSH
- Laccase MeSH
- Oxidoreductases metabolism MeSH
- Hydrogen Peroxide metabolism MeSH
- Peroxidases metabolism MeSH
- Pleurotus chemistry enzymology metabolism MeSH
- Textile Industry MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Coloring Agents MeSH
- Laccase MeSH
- manganese peroxidase MeSH Browser
- Oxidoreductases MeSH
- Hydrogen Peroxide MeSH
- Peroxidases MeSH