A person's age estimation from biological evidence is a crucial aspect of forensic investigations, aiding in victim identification and criminal profiling. In this study, we present a novel approach of utilizing Attenuated Total Reflection Fourier Transform Infrared (ATR FT-IR) spectroscopy to predict the age of donors based on nail samples. A diverse dataset comprising nails from donors spanning different age groups was analyzed using ATR FT-IR, with subsequent multivariate analysis techniques used for age prediction. The developed partial least squares regression (PLS-R) model demonstrated promising accuracy in age estimation, with a root mean square error of prediction (RMSEP) equal to 11.1 during external validation. Additionally, a partial least squares discriminant analysis (PLS-DA) classification model achieved high accuracy of 88% in classifying donors into younger and older age groups during external validation. This proof-of-concept study highlights the potential of ATR FT-IR spectroscopy as a non-destructive and efficient tool for age estimation in forensic investigations, offering a new approach to forensic analysis with practical implications.
- Klíčová slova
- ATR FT‐IR, PLS‐DA, PLS‐R, age, chemometrics, nails,
- MeSH
- diskriminační analýza MeSH
- dítě MeSH
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- metoda nejmenších čtverců MeSH
- mladiství MeSH
- mladý dospělý MeSH
- nehty * chemie MeSH
- ověření koncepční studie MeSH
- senioři nad 80 let MeSH
- senioři MeSH
- soudní vědy metody MeSH
- spektroskopie infračervená s Fourierovou transformací MeSH
- stárnutí MeSH
- Check Tag
- dítě MeSH
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladiství MeSH
- mladý dospělý MeSH
- mužské pohlaví MeSH
- senioři nad 80 let MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
Co-milling is an effective technique for improving dissolution rate limited absorption characteristics of poorly water-soluble drugs. However, there is a scarcity of models available to forecast the magnitude of dissolution rate improvement caused by co-milling. Therefore, this study endeavoured to quantitatively predict the increase in dissolution by co-milling based on drug properties. Using a biorelevant dissolution setup, a series of 29 structurally diverse and crystalline drugs were screened in co-milled and physically blended mixtures with Polyvinylpyrrolidone K25. Co-Milling Dissolution Ratios after 15 min (COMDR15 min) and 60 min (COMDR60 min) drug release were predicted by variable selection in the framework of a partial least squares (PLS) regression. The model forecasts the COMDR15 min (R2 = 0.82 and Q2 = 0.77) and COMDR60 min (R2 = 0.87 and Q2 = 0.84) with small differences in root mean square errors of training and test sets by selecting four drug properties. Based on three of these selected variables, applicable multiple linear regression equations were developed with a high predictive power of R2 = 0.83 (COMDR15 min) and R2 = 0.84 (COMDR60 min). The most influential predictor variable was the median drug particle size before milling, followed by the calculated drug logD6.5 value, the calculated molecular descriptor Kappa 3 and the apparent solubility of drugs after 24 h dissolution. The study demonstrates the feasibility of forecasting the dissolution rate improvements of poorly water-solube drugs through co-milling. These models can be applied as computational tools to guide formulation in early stage development.
- Klíčová slova
- Ball milling, Co-grinding, Co-milling, Dissolution rate enhancement, In silico modelling, Multiple linear regression, Partial least squares regression,
- MeSH
- léčivé přípravky chemie MeSH
- metoda nejmenších čtverců MeSH
- počítačová simulace MeSH
- povidon chemie MeSH
- příprava léků * metody MeSH
- rozpustnost * MeSH
- uvolňování léčiv * MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- léčivé přípravky MeSH
- povidon MeSH
We demonstrate that all meta-analyses of partial correlations are biased, and yet hundreds of meta-analyses of partial correlation coefficients (PCCs) are conducted each year widely across economics, business, education, psychology, and medical research. To address these biases, we offer a new weighted average, UWLS+3 . UWLS+3 is the unrestricted weighted least squares weighted average that makes an adjustment to the degrees of freedom that are used to calculate partial correlations and, by doing so, renders trivial any remaining meta-analysis bias. Our simulations also reveal that these meta-analysis biases are small-sample biases (n < 200), and a simple correction factor of (n - 2)/(n - 1) greatly reduces these small-sample biases along with Fisher's z. In many applications where primary studies typically have hundreds or more observations, partial correlations can be meta-analyzed in standard ways with only negligible bias. However, in other fields in the social and the medical sciences that are dominated by small samples, these meta-analysis biases are easily avoidable by our proposed methods.
In the realm of multi-class classification, the twin K-class support vector classification (Twin-KSVC) generates ternary outputs {-1,0,+1} by evaluating all training data in a "1-versus-1-versus-rest" structure. Recently, inspired by the least-squares version of Twin-KSVC and Twin-KSVC, a new multi-class classifier called improvements on least-squares twin multi-class classification support vector machine (ILSTKSVC) has been proposed. In this method, the concept of structural risk minimization is achieved by incorporating a regularization term in addition to the minimization of empirical risk. Twin-KSVC and its improvements have an influence on classification accuracy. Another aspect influencing classification accuracy is feature selection, which is a critical stage in machine learning, especially when working with high-dimensional datasets. However, most prior studies have not addressed this crucial aspect. In this study, motivated by ILSTKSVC and the cardinality-constrained optimization problem, we propose ℓp-norm least-squares twin multi-class support vector machine (PLSTKSVC) with 0
Consumers demand safe and nutritious foods at accessible prices; where issues associated with adulteration, fraud, and provenance have become important aspects to be considered by the modern food industry. There are many analytical techniques and methods available to determine food composition and quality, including food security. Among them, vibrational spectroscopy techniques are at the first line of defence (near and mid infrared spectroscopy, and Raman spectroscopy). In this study, a portable near infrared (NIR) instrument was evaluated to identify different levels of adulteration between binary mixtures of exotic and traditional meat species. Fresh meat cuts of lamb (Ovis aries), emu (Dromaius novaehollandiae), camel (Camelus dromedarius) and beef (Bos taurus) sourced from a commercial abattoir were used to make different binary mixtures (95 % %w/w, 90 % %w/w, 50 % %w/w, 10 % %w/w and 5 % %w/w) and analysed using a portable NIR instrument. The NIR spectra of the meat mixtures was analysed using principal component analysis (PCA), and partial least squares discriminant analysis (PLS-DA). Two isosbestic points corresponding to absorbances at 1028 nm and 1224 nm were found to be consistent across all the binary mixtures analysed. The coefficient of determination in cross validation (R2) obtained for the determination of the per cent of species in a binary mixture was above 90 % with a standard error in cross validation (SECV) ranging between 12.6 and 15 %w/w. Overall, the results of this study indicate that NIR spectroscopy can determine the level or ratio of adulteration in the binary mixtures of minced meat.
- Klíčová slova
- Beef, Camel, Emu, Lamb, Meat, Mixtures, Near infrared,
- MeSH
- blízká infračervená spektroskopie metody MeSH
- chemometrika MeSH
- Dromaiidae * MeSH
- kontaminace potravin analýza MeSH
- metoda nejmenších čtverců MeSH
- ovce domácí * MeSH
- ovce MeSH
- skot MeSH
- velbloudi MeSH
- zvířata MeSH
- Check Tag
- skot MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Finding an appropriate satellite image as simultaneous as possible with the sampling time campaigns is challenging. Fusion can be considered as a method of integrating images and obtaining more pixels with higher spatial, spectral and temporal resolutions. This paper investigated the impact of Landsat 8-OLI and Sentinel-2A data fusion on prediction of several toxic elements at a mine waste dump. The 30 m spatial resolution Landsat 8-OLI bands were fused with the 10 m Sentinel-2A bands using various fusion techniques namely hue-saturation-value (HSV), Brovey, principal component analysis (PCA), Gram-Schmidt (GS), wavelet, and area-to-point regression kriging (ATPRK). ATPRK was the best method preserving both spectral and spatial features of Landsat 8-OLI and Sentinel-2A after fusion. Furthermore, the partial least squares regression (PLSR) model developed on genetic algorithm (GA)-selected laboratory visible-near infrared-shortwave infrared (VNIR-SWIR) spectra yielded more accurate prediction results compared to the PLSR model calibrated on the entire spectra. It was hence, applied to both individual sensors and their ATPRK-fused image. In case of the individual sensors, except for As, Sentinel-2A provided more robust prediction models than Landsat 8-OLI. However, the best performances were obtained using the fused images, highlighting the potential of data fusion to enhance the toxic elements' prediction models.
- Klíčová slova
- Data fusion, Earth observation, Genetic algorithm, Satellite image, Soil contamination,
- MeSH
- analýza hlavních komponent MeSH
- metoda nejmenších čtverců MeSH
- půda * MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- půda * MeSH
In situ visible and near-infrared (Vis-NIR) spectroscopy has proven to be a reliable tool for determining soil organic carbon (SOC) content with a small loss of precision as compared to laboratory measurements. The loss of precision is a result of disturbing external environmental factors that disrupt spectral measurements. For example, roughness, changes in weather conditions, humidity, temperature, human factors, spectral noise and especially soil water. It has been assumed that, in situ predictive capability could be improved if some of these factors are either minimized or eliminated during the in situ measurement. For this study, the prediction of SOC was carried out under two different in situ measurement conditions; less favourable environmental conditions (with disturbances) and more favourable site-specific conditions (disturbance-reduced conditions). The primary goal is to determine whether the estimate of SOC can be improved under more favourable site-specific conditions, as well as the impact of pre-treatment algorithms on both less and more favourable disturbed conditions. The study employed a large range of pretreatment algorithms and their combinations. Three separate multivariate models were used to predict SOC, namely Cubist, support vector machine regression (SVMR), and partial least squares regression (PLSR). The result clearly shows that reduced disturbing factors (i.e., drier and unploughed soil as well as noise reduction) result in an improvement of SOC prediction with in situ Vis-NIR spectroscopy. The best overall result was achieved with SVMR (R2CV = 0.72, RMSEPcv = 0.21, RPIQ = 2.34). Although the combination of pre-treatment algorithms resulted in an improvement, overall, these pre-treatment algorithms could not compensate for the factors affecting the measured spectra with disturbance. Though the obtained result is promising, further study is still needed to disentangle the impacts and interactions of various disturbing factors for different soil types.
- Klíčová slova
- Agricultural soil, In situ spectroscopy, Machine learning algorithms, Pre-treatment algorithms, SOC,
- MeSH
- blízká infračervená spektroskopie metody MeSH
- lidé MeSH
- metoda nejmenších čtverců MeSH
- půda * chemie MeSH
- support vector machine MeSH
- uhlík * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- půda * MeSH
- uhlík * MeSH
This paper is focused on the design, implementation and verification of a novel method for the optimization of the control parameters of different hybrid systems used for non-invasive fetal electrocardiogram (fECG) extraction. The tested hybrid systems consist of two different blocks, first for maternal component estimation and second, so-called adaptive block, for maternal component suppression by means of an adaptive algorithm (AA). Herein, we tested and optimized four different AAs: Adaptive Linear Neuron (ADALINE), Standard Least Mean Squares (LMS), Sign-Error LMS, Standard Recursive Least Squares (RLS), and Fast Transversal Filter (FTF). The main criterion for optimal parameter selection was the F1 parameter. We conducted experiments using real signals from publicly available databases and those acquired by our own measurements. Our optimization method enabled us to find the corresponding optimal settings for individual adaptive block of all tested hybrid systems which improves achieved results. These improvements in turn could lead to a more accurate fetal heart rate monitoring and detection of fetal hypoxia. Consequently, our approach could offer the potential to be used in clinical practice to find optimal adaptive filter settings for extracting high quality fetal ECG signals for further processing and analysis, opening new diagnostic possibilities of non-invasive fetal electrocardiography.
- MeSH
- algoritmy MeSH
- elektrokardiografie * metody MeSH
- lidé MeSH
- metoda nejmenších čtverců MeSH
- monitorování plodu metody MeSH
- plod fyziologie MeSH
- počítačové zpracování signálu * MeSH
- těhotenství MeSH
- Check Tag
- lidé MeSH
- těhotenství MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
In this paper, we study the design aspects of an indoor visible light positioning (VLP) system that uses an artificial neural network (ANN) for positioning estimation by considering a multipath channel. Previous results usually rely on the simplistic line of sight model with limited validity. The study considers the influence of noise as a performance indicator for the comparison between different design approaches. Three different ANN algorithms are considered, including Levenberg-Marquardt, Bayesian regularization, and scaled conjugate gradient algorithms, to minimize the positioning error (εp) in the VLP system. The ANN design is optimized based on the number of neurons in the hidden layers, the number of training epochs, and the size of the training set. It is shown that, the ANN with Bayesian regularization outperforms the traditional received signal strength (RSS) technique using the non-linear least square estimation for all values of signal to noise ratio (SNR). Furthermore, in the inner region, which includes the area of the receiving plane within the transmitters, the positioning accuracy is improved by 43, 55, and 50% for the SNR of 10, 20, and 30 dB, respectively. In the outer region, which is the remaining area within the room, the positioning accuracy is improved by 57, 32, and 6% for the SNR of 10, 20, and 30 dB, respectively. Moreover, we also analyze the impact of different training dataset sizes in ANN, and we show that it is possible to achieve a minimum εp of 2 cm for 30 dB of SNR using a random selection scheme. Finally, it is observed that εp is low even for lower values of SNR, i.e., εp values are 2, 11, and 44 cm for the SNR of 30, 20, and 10 dB, respectively.
- Klíčová slova
- Bayesian regularization, artificial neural network (ANN), multipath reflections, non-linear least square, visible light communication (VLC), visible light positioning,
- MeSH
- algoritmy * MeSH
- Bayesova věta MeSH
- metoda nejmenších čtverců MeSH
- neuronové sítě (počítačové) * MeSH
- světlo MeSH
- Publikační typ
- časopisecké články MeSH
Metalearning, an important part of artificial intelligence, represents a promising approach for the task of automatic selection of appropriate methods or algorithms. This paper is interested in recommending a suitable estimator for nonlinear regression modeling, particularly in recommending either the standard nonlinear least squares estimator or one of such available alternative estimators, which is highly robust with respect to the presence of outliers in the data. The authors hold the opinion that theoretical considerations will never be able to formulate such recommendations for the nonlinear regression context. Instead, metalearning is explored here as an original approach suitable for this task. In this paper, four different approaches for automatic method selection for nonlinear regression are proposed and computations over a training database of 643 real publicly available datasets are performed. Particularly, while the metalearning results may be harmed by the imbalanced number of groups, an effective approach yields much improved results, performing a novel combination of supervised feature selection by random forest and oversampling by synthetic minority oversampling technique (SMOTE). As a by-product, the computations bring arguments in favor of the very recent nonlinear least weighted squares estimator, which turns out to outperform other (and much more renowned) estimators in a quite large percentage of datasets.
- Klíčová slova
- AutoML, Metalearning, feature selection, nonlinear regression, robust statistical estimation,
- MeSH
- algoritmy * MeSH
- metoda nejmenších čtverců MeSH
- umělá inteligence * MeSH
- Publikační typ
- časopisecké články MeSH