Meta-analyses of partial correlations are biased: Detection and solutions
Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic
Typ dokumentu metaanalýza, časopisecké články
Grantová podpora
#24-11583S
Czech Science Foundation
LX22NPO5101
NPO "Systemic Risk Institute"
European Union-Next Generation EU
PubMed
38342768
DOI
10.1002/jrsm.1704
Knihovny.cz E-zdroje
- Klíčová slova
- bias, meta-analysis, partial correlation coefficients, small sample,
- MeSH
- biomedicínský výzkum * MeSH
- metoda nejmenších čtverců MeSH
- výzkumný projekt * MeSH
- zkreslení výsledků (epidemiologie) MeSH
- Publikační typ
- časopisecké články MeSH
- metaanalýza MeSH
We demonstrate that all meta-analyses of partial correlations are biased, and yet hundreds of meta-analyses of partial correlation coefficients (PCCs) are conducted each year widely across economics, business, education, psychology, and medical research. To address these biases, we offer a new weighted average, UWLS+3 . UWLS+3 is the unrestricted weighted least squares weighted average that makes an adjustment to the degrees of freedom that are used to calculate partial correlations and, by doing so, renders trivial any remaining meta-analysis bias. Our simulations also reveal that these meta-analysis biases are small-sample biases (n < 200), and a simple correction factor of (n - 2)/(n - 1) greatly reduces these small-sample biases along with Fisher's z. In many applications where primary studies typically have hundreds or more observations, partial correlations can be meta-analyzed in standard ways with only negligible bias. However, in other fields in the social and the medical sciences that are dominated by small samples, these meta-analysis biases are easily avoidable by our proposed methods.
Centre for Economic Policy Research London UK
Department of Economics Deakin University Burwood Victoria Australia
Institute of Economic Studies Faculty of Social Sciences Charles University Prague Czech Republic
Meta Research Innovation Center at Stanford Stanford University Palo Alto USA
Zobrazit více v PubMed
Aloe AM, Thompson CG. The synthesis of partial effect sizes. J Soc Soc Work and Res. 2013;4(4):390-405.
Stanley TD, Doucouliagos H. Meta-Regression Analysis in Economics and Business. Routledge; 2012.
Olkin I, Pratt JW. Unbiased estimation of certain correlation coefficients. Ann Math Stat. 1958;29:201-211.
Stanley TD, Doucouliagos H. Correct standard errors can bias meta-analysis. Res Synth Methods. 2023;14:515-519.
Rockers PC, Røttingen J, Shemilt I, Tugwell P, Barnighausen T. Inclusion of quasi-experimental studies in systematic reviews of health systems research. Health Pol. 2015;119:511-521.
Fisher RA. The distribution of the partial correlation coefficient. Metron. 1924;3:329-332.
Gustafson RL. Partial correlations in regression computations. JASA. 1961;56(294):363-367.
Havranek T, Irsova Z, Zeynalova O. Tuition fees and university enrolment: a meta-regression analysis. Oxford Bull Econ Stat. 2018;80:1145-1184.
Geyer-Klingeberg J, Hang M, Rathgeber AW. What drives financial hedging? A meta-regression analysis of corporate hedging determinants. Inter Rev Fin Anal. 2019;61:203-221.
Olkin I, Siotani M. Asymptotic distribution of functions of a correlation matrix. In: Ikeda S, ed. Essays in Probability and Statistics. Shinko Tsusho; 1976:235-251.
Aert VR, Goos C. A critical reflection on computing the sampling variance of the partial correlation coefficient. Res Synth Methods. 2023;14:520-525. doi:10.1002/jrsm.1632
Levy KJ, Narula SC. Testing hypotheses concerning partial correlations: some methods and discussion. Int Statis Rev/Revue Internationale de Statistique. 1978;46(2):215-218.
Wooldridge JM. Introductory Econometrics. 2ed ed. Thompson; 2003.
Stanley TD, Doucouliagos H. Neither fixed nor random: weighted least squares meta-analysis. Stat Med. 2015;34:2116-2127.
Stanley TD, Doucouliagos H. Neither fixed nor random: weighted least squares meta-regression. Res Synth Methods. 2017;8:19-42.
Stanley TD, Doucouliagos H, Ioannidis JPA. Beyond random effects: when small-study findings are more heterogeneous. Adv Methods Pract Psychol Sci. 2022;5:1-11. doi:10.1177/25152459221120427
Stanley TD, Doucouliagos H, Havranek T. Reducing the Biases of the Conventional Meta-Analysis of Correlations. 2023 Working Paper, http://hdl.handle.net/10419/280227
Stanley TD, Carter E, Doucouliagos H. What meta-analyses reveal about the replicability of psychological research. Psyc Bull. 2018;144:1325-1346.
Borenstein M, Hedges L, Higgins J, Rothstein H. Introduction to Meta-Analysis. Wiley; 2009.
Stanley TD, Ioannidis JPA, Maier M, Doucouliagos H, Otte WM, Bartoš F. Unrestricted weighted least squares represent medical research better than random effects in 67,308 Cochrane meta-analyses. J Clin Epidemin. 2023;157:53-58.
Askarov Z, Doucouliagos A, Doucouliagos H, Stanley TD. Selective and (mis)leading economics journals: meta-research evidence. J Econ Surv. 2023. doi:10.1111/joes.12598