Spurious precision in meta-analysis of observational research
Language English Country Great Britain, England Media electronic
Document type Journal Article
PubMed
41006270
PubMed Central
PMC12475282
DOI
10.1038/s41467-025-63261-0
PII: 10.1038/s41467-025-63261-0
Knihovny.cz E-resources
- MeSH
- Humans MeSH
- Meta-Analysis as Topic * MeSH
- Computer Simulation MeSH
- Observational Studies as Topic * MeSH
- Publication Bias MeSH
- Reproducibility of Results MeSH
- Sample Size MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
Meta-analysis assigns more weight to studies with smaller standard errors to maximize the precision of the overall estimate. In observational settings, however, standard errors are shaped by methodological decisions. These decisions can interact with publication bias and p-hacking, potentially leading to spuriously precise results reported by primary studies. Here we show that such spurious precision undermines standard meta-analytic techniques, including inverse-variance weighting and bias corrections based on the funnel plot. Through simulations and large-scale empirical applications, we find that selection models do not resolve the issue. In some cases, a simple unweighted mean of reported estimates outperforms widely used correction methods. We introduce MAIVE (Meta-Analysis Instrumental Variable Estimator), an approach that reduces bias by using sample size as an instrument for reported precision. MAIVE offers a simple and robust solution for improving the reliability of meta-analyses in the presence of spurious precision.
Centre for Economic Policy Research London UK
Institute of Economic Studies Faculty of Social Sciences Charles University Prague Czech Republic
Meta Research Innovation Center at Stanford Stanford University Stanford CA USA
See more in PubMed
Gurevitch, J., Koricheva, J., Nakagawa, S. & Stewart, G. Meta-analysis and the science of research synthesis. PubMed
Borenstein, M., Hedges, L., Higgins, J. & Rothstein, H. A basic introduction to fixed-effect and random-effects models for meta-analysis. PubMed
Stanley, T. D. & Doucouliagos, H. Neither fixed nor random: weighted least squares meta-analysis. PubMed
Egger, M., Smith, G. D., Schneider, M. & Minder, C. Bias in meta-analysis detected by a, simple, graphical test. PubMed PMC
Duval, S. & Tweedie, R. Trim and fill: a simple funnel-plot–based method of testing and adjusting for publication bias in meta-analysis. PubMed
Stanley, T. D. & Doucouliagos, H.
Stanley, T. D. & Doucouliagos, H. Meta-regression approximations to reduce publication selection bias. PubMed
Ioannidis, J. P., Stanley, T. D. & Doucouliagos, H. The power of bias in economics research.
Bom, P. R. D. & Rachinger, H. A kinked meta-regression model for publication bias correction. PubMed
Hedges, L. Estimation of effect size under nonrandom sampling: The effects of censoring studies yielding statistically insignificant mean differences.
Iyengar, S. & Greenhouse, J. B. Selection models and the file drawer problem.
Hedges, L. V. Modeling publication selection effects in meta-analysis.
Vevea, J. & Hedges, L. V. A general linear model for estimating effect size in the presence of publication bias.
Andrews, I. & Kasy, M. Identification of and correction for publication bias.
van Aert, R. C. & van Assen, M. Correcting for publication bias in a meta-analysis with the p-uniform* method.
Dal-Re, R. et al. Making prospective registration of observational research a reality. PubMed
Bruns, S. B. & Ioannidis, J. P. p-Curve and p-hacking in observational research. PubMed PMC
Abadie, A., Athey, S., Imbens, G. W. & Wooldridge, J. M. When should you adjust standard errors for clustering?
Cameron, A. C. & Miller, D. L. A practitioner’s guide to cluster-robust inference.
Roodman, D., Nielsen, M. Ø., MacKinnon, J. G. & Webb, M. D. Fast and wild: bootstrap inference in stata using boottest.
de Chaisemartin, C. & Ramirez-Cuellar, J. At what level should one cluster standard errors in paired and small-strata experiments?
MacKinnon, J. G., Nielsen, M. O. & Webb, M. D. Cluster-robust inference: a guide to empirical practice.
White, H. A heteroskedasticity-consistent covariance matrix estimator and a direct test for heteroskedasticity.
Chesher, A. & Jewitt, I. The bias of a heteroskedasticity consistent covariance matrix estimator.
Lang, K. How credible is the credibility revolution?
Roth, J. Pretest with caution: event-study estimates after testing for parallel trends.
Keane, M. & Neal, T. Instrument strength in IV estimation and inference: a guide to theory and practice.
Young, A. Channeling fisher: randomization tests and the statistical insignificance of seemingly significant experimental results.
Askarov, Z., Doucouliagos, A., Doucouliagos, H. & Stanley, T. D. The significance of data-sharing policy.
Lane, H. & Tranel, B. The Lombard sign and the role of hearing in speech.
Taylor, L. R. Aggregation, variance and the mean.
Stanley, T. D. & Doucouliagos, H. Neither fixed nor random: weighted least squares meta-regression. PubMed
Havranek, T. et al. Reporting guidelines for meta-analysis in economics.
Ugur, M., Awaworyi Churchill, S. & Luong, H. What do we know about R&D spillovers and productivity? Meta-analysis evidence on heterogeneity and statistical power.
Xue, X., Reed, W. R. & Menclova, A. Social capital and health: a meta-analysis. PubMed
Neisser, C. The elasticity of taxable income: a meta-regression analysis.
Nakagawa, S., Lagisz, M. & Jennions, M. D. et al. Methods for testing publication bias in ecological and evolutionary meta-analyses.
Brown, A. L., Imai, T., Vieider, F. & Camerer, C. Meta-analysis of empirical estimates of loss-aversion.
Carter, E. C., Schonbrodt, F. D., Gervais, W. M. & Hilgard, J. Correcting for bias in psychology: a comparison of meta-analytic methods.
Brodeur, A., Cook, N. & Heyes, A. Methods matter: P-hacking and causal inference in economics.
DellaVigna, S. & Linos, E. RCTs to scale: comprehensive evidence from two nudge units.
Imai, T., Rutter, T. A. & Camerer, C. F. Meta-analysis of present-bias estimation using convex time budgets.
Gechert, S. & Heimberger, P. Do corporate tax cuts boost economic growth?
Havranek, T., Irsova, Z., Laslopova, L. & Zeynalova, O. Publication and attenuation biases in measuring skill substitution.
Matousek, J., Havranek, T. & Irsova, Z. Individual discount rates: a meta-analysis of experimental evidence.
Simonsohn, U., Nelson, L. D. & Simmons, J. P. p-Curve: a key to the file-drawer. PubMed
Simonsohn, U., Nelson, L. D. & Simmons, J. P. p-Curve and effect size: correcting for publication bias using only significant results. PubMed
Assen, V. M., Aert, V. R. C. & Wicherts, J. M. Meta-analysis using effect size distributions of only statistically significant studies. PubMed
Simonsohn, U., Simmons, J. P. & Nelson, L. D. Better P-curves: making P-curve analysis more robust to, errors, fraud, and ambitious P-hacking, a Reply to Ulrich and Miller PubMed
Aert, V. R. C. & Assen, V. M. Bayesian evaluation of effect size after replicating an original study. PubMed PMC
Aert, V. R. C. & Assen, V. M. Examining reproducibility in psychology: a hybrid method for combining a statistically significant original study and a replication. PubMed PMC
Stanley, T. D. Beyond publication bias.
Pustejovsky, J. E. & Rodgers, M. A. Testing for funnel plot asymmetry of standardized mean differences. PubMed
Stanley, T. D., Doucouliagos, H. & Havranek, T. Meta-analyses of partial correlations are biased: detection and solutions. PubMed
Kvarven, A., Stromland, E. & Johannesson, M. Comparing meta-analyses and preregistered multiple-laboratory replication projects. PubMed
Bartos, F. et al. Footprint of publication selection bias on meta-analyses in medicine, environmental sciences, psychology, and economics. PubMed
Sanchez-Meca, J. & Martin-Martinez, F. Weighting by inverse variance or by sample size in meta-analysis: a simulation study.
Deeks, J. J., Macaskill, P. & Irwig, L. The performance of tests of publication bias and other sample size effects in systematic reviews. PubMed
Peters, J. L., Sutton, A. J., Jones, D. R., Abrams, K. R. & Rushton, L. Comparison of Two Methods to Detect Publication Bias in Meta-analysis. PubMed
Richard, D. & Riley, L. A. S.
Irsova, Z., Bom, P. R. D., Havranek, T. & Rachinger, H. Replication materials for “Spurious precision in meta-analysis of observational research”. PubMed PMC
Spurious precision in meta-analysis of observational research