Most cited article - PubMed ID 12164695
Liquid phase interfacing and miniaturization in matrix-assisted laser desorption/ionization mass spectrometry
Capillary electrophoresis coupled online with mass detection is a modern tool for analyzing wide ranges of compounds in complex samples, including urine. Capillary electrophoresis with mass spectrometry allows the separation and identification of various analytes spanning from small ions to high molecular weight protein complexes. Similarly to the much more common liquid chromatography-mass spectrometry techniques, the capillary electrophoresis separation reduces the complexity of the mixture of analytes entering the mass spectrometer resulting in reduced ion suppression and a more straightforward interpretation of the mass spectrometry data. This review summarizes capillary electrophoresis with mass spectrometry studies published between the years 2017 and 2021, aiming at the determination of various compounds excreted in urine. The properties of the urine, including its diagnostical and analytical features and chemical composition, are also discussed including general protocols for the urine sample preparation. The mechanism of the electrophoretic separation and the instrumentation for capillary electrophoresis with mass spectrometry coupling is also included. This review shows the potential of the capillary electrophoresis with mass spectrometry technique for the analyses of different kinds of analytes in a complex biological matrix. The discussed applications are divided into two main groups (capillary electrophoresis with mass spectrometry for the determination of drugs and drugs of abuse in urine and capillary electrophoresis with mass spectrometry for the studies of urinary metabolome).
- Keywords
- capillary electrophoresis, drugs, mass spectrometry, metabolome, urine analysis,
- MeSH
- Electrophoresis, Capillary methods trends MeSH
- Mass Spectrometry methods trends MeSH
- Pharmaceutical Preparations urine MeSH
- Humans MeSH
- Metabolomics MeSH
- Urine chemistry MeSH
- Substance Abuse Detection methods MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Review MeSH
- Names of Substances
- Pharmaceutical Preparations MeSH
Applications of tandem mass spectrometry (MS/MS) techniques coupled with high-performance liquid chromatography (HPLC) in the identification and determination of phase I and phase II drug metabolites are reviewed with an emphasis on recent papers published predominantly within the last 6 years (2002-2007) reporting the employment of atmospheric pressure ionization techniques as the most promising approach for a sensitive detection, positive identification and quantitation of metabolites in complex biological matrices. This review is devoted to in vitro and in vivo drug biotransformation in humans and animals. The first step preceding an HPLC-MS bioanalysis consists in the choice of suitable sample preparation procedures (biomatrix sampling, homogenization, internal standard addition, deproteination, centrifugation, extraction). The subsequent step is the right optimization of chromatographic conditions providing the required separation selectivity, analysis time and also good compatibility with the MS detection. This is usually not accessible without the employment of the parent drug and synthesized or isolated chemical standards of expected phase I and sometimes also phase II metabolites. The incorporation of additional detectors (photodiode-array UV, fluorescence, polarimetric and others) between the HPLC and MS instruments can result in valuable analytical information supplementing MS results. The relation among the structural changes caused by metabolic reactions and corresponding shifts in the retention behavior in reversed-phase systems is discussed as supporting information for identification of the metabolite. The first and basic step in the interpretation of mass spectra is always the molecular weight (MW) determination based on the presence of protonated molecules [M+H](+) and sometimes adducts with ammonium or alkali-metal ions, observed in the positive-ion full-scan mass spectra. The MW determination can be confirmed by the [M-H](-) ion for metabolites providing a signal in negative-ion mass spectra. MS/MS is a worthy tool for further structural characterization because of the occurrence of characteristic fragment ions, either MS( n ) analysis for studying the fragmentation patterns using trap-based analyzers or high mass accuracy measurements for elemental composition determination using time of flight based or Fourier transform mass analyzers. The correlation between typical functional groups found in phase I and phase II drug metabolites and corresponding neutral losses is generalized and illustrated for selected examples. The choice of a suitable ionization technique and polarity mode in relation to the metabolite structure is discussed as well.
- MeSH
- Biotransformation MeSH
- Pharmaceutical Preparations analysis chemistry metabolism MeSH
- Molecular Structure MeSH
- Tandem Mass Spectrometry * MeSH
- Chromatography, High Pressure Liquid MeSH
- Xenobiotics analysis chemistry metabolism MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Review MeSH
- Names of Substances
- Pharmaceutical Preparations MeSH
- Xenobiotics MeSH