Nejvíce citovaný článek - PubMed ID 12496158
Streptococcus uberis is one of the primary causative agents of mastitis, a clinically and economically significant disease that affects dairy cattle worldwide. In this study, we analyzed 140 S. uberis strains isolated from mastitis milk samples collected from 74 cow herds in the Czech Republic. We employed whole-genome sequencing to screen for the presence of antimicrobial resistance (AMR) genes and genes encoding virulence factors, and to assess their genetic relationships. Our analysis revealed the presence of 88 different sequence types (STs), with 41% of the isolates assigned to global clonal complexes (GCCs), the majority of which were affiliated with GCC5. The STs identified were distributed across the major phylogenetic branches of all currently known STs. We identified fifty-one putative virulence factor genes, and the majority of isolates carried between 27 and 29 of these genes. A tendency of virulence factors and AMR genes to cluster with specific STs was observed, although such clustering was not evident within GCCs. Principal component analysis did not reveal significant diversity among isolates when grouped by GCC or ST prevalence. The substantial genomic diversity and the wide array of virulence factors found in S. uberis strains present a challenge for the implementation of effective anti-mastitis measures.
- Klíčová slova
- MLST, antimicrobial resistance genes, intramammary infection, mastitis, phylogenetic tree, sequence type, virulence genes,
- Publikační typ
- časopisecké články MeSH
The ubiquitous occurrence and high heterogeneity of Streptococcus uberis strains cause difficulties in the development and implementation of effective control strategies in dairy herds. In this study, S. uberis strains from 74 farms, obtained predominantly from subclinical, acute, and chronic recurrent mastitis, as well as from udder surface swabs and milk from healthy udders, were analysed for their genetic diversity using multilocus sequence typing (MLST). Isolates were tested for the presence of the genes encoding the virulence factors using polymerase chain reaction. Antibiotic susceptibility testing was performed using a microdilution assay including 14 antimicrobials. The virulence profiles and antimicrobial (AMR) profiles of the isolates were assembled and the overall heterogeneity was evaluated. Among the 124 isolates, 89 MLST genotypes, 7 different virulence profiles, and 12 AMR profiles were identified. The large number of different MLST allelic profiles in this study points to the high heterogeneity of strains in dairy herds in the Czech Republic. Isolates of a certain MLST genotype may possess a different set of virulence factor genes. We detected up to three different resistance profiles within a single MLST genotype. The results of our study showed that fully susceptible isolates coexisted with resistant or even multiresistant isolates in the same herd. Multiple genotypes within a herd were detected on many farms (up to seven MLST genotypes and four AMR profiles in one herd). This heterogenic population structure might suggest that environmental transmission is the predominant route of infection in herds in the Czech Republic.
- Klíčová slova
- MLST, antimicrobial resistance, cows, intramammary infection, virulence factors,
- Publikační typ
- časopisecké články MeSH
Streptococcus uberis is one of the most important mastitis-causing pathogens. Although the pathogenesis and virulence factors required for the intramammary infection development are not yet well established, several putative virulence-associated genes have been described. This work aimed to investigate the presence of ten known and putative virulence-associated genes in S. uberis isolated from subclinical or clinical mastitis and its closely related species Streptococcus parauberis in 135 dairy farms in the Czech Republic. The PCR analysis detected that all the examined isolates possessed at least four virulence genes and most isolates carried eight out of ten virulence genes. All S. uberis isolates were positive for the oppF, gapC and sua genes. Among the most prevalent virulence-associated genes skc (98%) and pauA (97%) were also found. The hasA and hasB genes were always present together in 94% of the isolates. The genes cfu and lbp were detected in 6% and 2%, respectively. In the S. uberis isolates, 14 different virulence gene profiles were observed. The most frequent profile was hasA + hasB + sua + skc + pauA + gapC + oppF with variable hasC, observed in 86% of the tested isolates, occurring in 127 out of 135 farms. S. parauberis was identified very sporadically and, although it is closely related to S. uberis, only a rare occurrence of the examined virulence-associated genes was found.
- Klíčová slova
- cows, intramammary infections, mammary gland, pathogens, virulence factors,
- Publikační typ
- časopisecké články MeSH