Nejvíce citovaný článek - PubMed ID 12678657
Effect of intermittent high altitude hypoxia on gene expression in rat heart and lung
In 2023, six decades have elapsed since the first experimental work on the heart muscle was published, in which a member of the Institute of Physiology of the Czech Academy of Sciences participated as an author; Professor Otakar Poupa was the founder and protagonist of this research domain. Sixty years - more than half of the century - is certainly significant enough anniversary that is worth looking back and reflecting on what was achieved during sometimes very complicated periods of life. It represents the history of an entire generation of experimental cardiologists; it is possible to learn from its successes and mistakes. The objective of this review is to succinctly illuminate the scientific trajectory of an experimental cardiological department over a 60-year span, from its inaugural publication to the present. The old truth - historia magistra vitae - is still valid. Keywords: Heart, Adaptation, Development, Hypoxia, Protection.
- MeSH
- akademie a ústavy * dějiny MeSH
- biomedicínský výzkum * dějiny trendy MeSH
- dějiny 20. století MeSH
- dějiny 21. století MeSH
- fyziologie dějiny MeSH
- kardiologie dějiny trendy MeSH
- lidé MeSH
- srdce fyziologie MeSH
- zvířata MeSH
- Check Tag
- dějiny 20. století MeSH
- dějiny 21. století MeSH
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- historické články MeSH
- přehledy MeSH
- Geografické názvy
- Česká republika MeSH
The heart is characterized by a remarkable degree of heterogeneity. Since different cardiac pathologies affect different cardiac regions, it is important to understand molecular mechanisms by which these parts respond to pathological stimuli. In addition to already described left ventricular (LV)/right ventricular (RV) and transmural differences, possible baso-apical heterogeneity has to be taken into consideration. The aim of our study has been, therefore, to compare proteomes in the apical and basal parts of the rat RV and LV. Two-dimensional electrophoresis was used for the proteomic analysis. The major result of this study has revealed for the first time significant baso-apical differences in concentration of several proteins, both in the LV and RV. As far as the LV is concerned, five proteins had higher concentration in the apical compared to basal part of the ventricle. Three of them are mitochondrial and belong to the "metabolism and energy pathways" (myofibrillar creatine kinase M-type, L-lactate dehydrogenase, dihydrolipoamide dehydrogenase). Myosin light chain 3 is a contractile protein and HSP60 belongs to heat shock proteins. In the RV, higher concentration in the apical part was observed in two mitochondrial proteins (creatine kinase S-type and proton pumping NADH:ubiquinone oxidoreductase). The described changes were more pronounced in the LV, which is subjected to higher workload. However, in both chambers was the concentration of proteins markedly higher in the apical than that in basal part, which corresponds to the higher energetic demand and contractile activity of these segments of both ventricles.
- Klíčová slova
- Heart, Myocardial heterogeneity, Proteomics, Two-dimensional electrophoresis, Ventricle, Ventricular myocardium,
- MeSH
- 2D gelová elektroforéza MeSH
- chaperon hsp60 metabolismus MeSH
- chromatografie kapalinová MeSH
- dihydrolipoamiddehydrogenasa metabolismus MeSH
- energetický metabolismus MeSH
- kreatinkinasa, forma MM metabolismus MeSH
- L-laktátdehydrogenasa metabolismus MeSH
- lehké řetězce myosinu metabolismus MeSH
- mitochondriální proteiny metabolismus MeSH
- potkani Wistar MeSH
- proteomika * MeSH
- respirační komplex I metabolismus MeSH
- srdeční komory enzymologie metabolismus MeSH
- svalové proteiny izolace a purifikace metabolismus MeSH
- tandemová hmotnostní spektrometrie MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- chaperon hsp60 MeSH
- dihydrolipoamiddehydrogenasa MeSH
- Hspd1 protein, rat MeSH Prohlížeč
- kreatinkinasa, forma MM MeSH
- L-laktátdehydrogenasa MeSH
- lehké řetězce myosinu MeSH
- mitochondriální proteiny MeSH
- respirační komplex I MeSH
- svalové proteiny MeSH