Most cited article - PubMed ID 14533011
Experimental therapy of HPV16 induced tumors with IL12 expressed by recombinant vaccinia virus in mice
We constructed recombinant vaccinia viruses (VACVs) coexpressing the insulin-like growth factor-binding protein-3 (IGFBP-3) gene and the fusion gene encoding the SigE7Lamp antigen. The expression of the IGFBP-3 transgene was regulated either by the early H5 promoter or by the synthetic early/late (E/L) promoter. We have shown that IGFBP-3 expression regulated by the H5 promoter yielded higher amount of IGFBP-3 protein when compared with the E/L promoter. The immunization with P13-SigE7Lamp-H5-IGFBP-3 virus was more effective in inhibiting the growth of TC-1 tumors in mice and elicited higher T-cell response against VACV-encoded antigen than the P13-SigE7Lamp-TK(-) control virus. We found that high-level production of IGFBP-3 enhanced virus replication both in vitro and in vivo, resulting in more profound antigen stimulation. Production of IGFBP-3 was associated with a higher adsorption rate of P13-SigE7Lamp-H5-IGFBP-3 to CV-1 cells when compared with P13-SigE7Lamp-TK(-). Intracellular mature virions (IMVs) of the IGFBP-3-expressing virus P13-SigE7Lamp-H5-IGFBP-3 have two structural differences: they incorporate the IGFBP-3 protein and they have elevated phosphatidylserine (PS) exposure on outer membrane that could result in increased uptake of IMVs by macropinocytosis. The IMV PS content was measured by flow cytometry using microbeads covered with immobilized purified VACV virions.
- MeSH
- Antigens, Viral immunology MeSH
- Insulin-Like Growth Factor Binding Protein 3 genetics immunology MeSH
- Immunization methods MeSH
- Human papillomavirus 16 genetics immunology MeSH
- Mice, Inbred C57BL MeSH
- Mice MeSH
- Papillomavirus E7 Proteins genetics immunology MeSH
- Promoter Regions, Genetic MeSH
- Virus Replication immunology MeSH
- T-Lymphocytes immunology MeSH
- Antibody Formation MeSH
- Vaccination methods MeSH
- Viral Vaccines immunology pharmacology MeSH
- Vaccinia virus genetics immunology MeSH
- Animals MeSH
- Check Tag
- Mice MeSH
- Female MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Antigens, Viral MeSH
- Insulin-Like Growth Factor Binding Protein 3 MeSH
- oncogene protein E7, Human papillomavirus type 16 MeSH Browser
- Papillomavirus E7 Proteins MeSH
- Viral Vaccines MeSH
BACKGROUND: Vaccinia virus, one of the best known members of poxvirus family, has a wide host range both in vivo and in vitro. The expression of Flt3 ligand (FL) by recombinant vaccinia virus (rVACV) highly influenced properties of the virus in dependence on the level of expression. RESULTS: High production of FL driven by the strong synthetic promoter decreased the growth of rVACV in macrophage cell line J774.G8 in vitro as well as its multiplication in vivo when inoculated in mice. The inhibition of replication in vivo was mirrored in low levels of antibodies against vaccinia virus (anti-VACV) which nearly approached to the negative serum level in non-infected mice. Strong FL expression changed not only the host range of the recombinant but also the basic protein contents of virions. The major proteins - H3L and D8L - which are responsible for the virus binding to the cells, and 28 K protein that serves as a virulence factor, were changed in the membrane portion of P13-E/L-FL viral particles. The core virion fraction contained multiple larger, uncleaved proteins and a higher amount of cellular proteins compared to the control virus. The overexpression of FL also resulted in its incorporation into the viral core of P13-E/L-FL IMV particles. In contrary to the equimolar ratio of glycosylated and nonglycosylated FL forms found in cells transfected with the expression plasmid, the recombinant virus incorporated mainly the smaller, nonglycosylated FL. CONCLUSIONS: It has been shown that the overexpression of the Flt3L gene in VACV results in the attenuation of the virus in vivo.
- MeSH
- Cell Line MeSH
- Gene Expression * MeSH
- Humans MeSH
- Membrane Proteins genetics metabolism MeSH
- Mice MeSH
- Virus Replication MeSH
- Vaccinia genetics metabolism virology MeSH
- Vaccinia virus genetics physiology MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Mice MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- flt3 ligand protein MeSH Browser
- Membrane Proteins MeSH