Nejvíce citovaný článek - PubMed ID 14769414
Carbamazepine (CBZ), an effective drug for epilepsy and other neurological diseases, and its metabolites are one of the most frequently detected substances in the aquatic environment. Although these are doses of very low concentrations, chronic exposure to them can affect the physiological processes of living organisms. This experiment may clarify if carbamazepine, under an environmental and a therapeutic concentration, can affect the behaviour of higher vertebrates, especially mammals, and gene expressions of Ugt1a6 and Ugt1a7 in the brain compared to the control group without exposure to CBZ. Three groups of thirteen rats were randomly formed, and each group was treated either with carbamazepine 12 mg/kg (therapeutic), carbamazepine 0.1 mg/kg (environmental), or by 10% DMSO solution (control). The memory, anxiety, and social behaviour of the rats were assessed by the test Elevated Plus Maze, the novel object recognition test, and the social chamber paradigm. After testing, they were euthanised and brain tissue samples were collected and analysed for mRNA expression of Ugt1a6 and Ugt1a7 genes. The tests did not show significant differences in the behaviour of the rats between the groups. However, there were significant changes at the gene expression level of Ugt1a7.
- Klíčová slova
- behaviour, carbamazepine, gene expression, laboratory rat,
- Publikační typ
- časopisecké články MeSH
The anticonvulsant drug carbamazepine is considered as an indicator of sewage water pollution: however, its uptake by plants and effect on metabolism have not been sufficiently documented, let alone its metabolite (10,11-epoxycarbamazepine). In a model system of sterile, hydroponically cultivated Zea mays (as C4 plant) and Helianthus annuus (as C3 plant), the uptake and effect of carbamazepine and 10,11-epoxycarbamazepine were studied in comparison with those of acetaminophen and ibuprofen. Ibuprofen and acetaminophen were effectively extracted from drug-supplemented media by both plants, while the uptake of more hydrophobic carbamazepine was much lower. On the other hand, the carbamazepine metabolite, 10,11-epoxycarbamazepine, was, unlike sunflower, willingly taken up by maize plants (after 96 h 88 % of the initial concentration) and effectively stored in maize tissues. In addition, the effect of the studied pharmaceuticals on the plant metabolism (enzymes of Hatch-Slack cycle, peroxidases) was followed. The activity of bound peroxidases, which could cause xylem vessel lignification and reduction of xenobiotic uptake, was at the level of control plants in maize leaves contrary to sunflower. Therefore, our results indicate that maize has the potential to remove 10,11-epoxycarbamazepine from contaminated soils.
- Klíčová slova
- 10,11-Epoxycarbamazepine, Acetaminophen, Carbamazepine, Ibuprofen, NADP-ME, PEPC, Peroxidases, Phytoremediation,
- MeSH
- antikonvulziva analýza metabolismus MeSH
- biodegradace MeSH
- Helianthus účinky léků růst a vývoj metabolismus MeSH
- hydroponie MeSH
- karbamazepin analogy a deriváty analýza metabolismus MeSH
- kukuřice setá účinky léků růst a vývoj metabolismus MeSH
- látky znečišťující půdu analýza metabolismus MeSH
- listy rostlin účinky léků růst a vývoj metabolismus MeSH
- vysokoúčinná kapalinová chromatografie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Česká republika MeSH
- Názvy látek
- antikonvulziva MeSH
- carbamazepine epoxide MeSH Prohlížeč
- karbamazepin MeSH
- látky znečišťující půdu MeSH
Ubiquitous occurrence of pharmaceuticals in aquatic environment results in concern about potential adverse the effects on nontarget organisms. In water, drugs are present in complex mixtures, in which complicated interactions affect toxicity of single components. The purpose of this study was to examine effect of 35-day-long exposure to mixture of ibuprofen, diclofenac, and carbamazepine on the mortality, growth, early ontogeny, and histopathological changes in tench (Tinca tinca). Early life stage toxicity test was carried out using a modified protocol according to OECD guideline 210. Exposure to mixture of pharmaceuticals at concentration of 60 μg · L(-1) for each substance was associated with significant increase in mortality, as well as significant increase in growth and elevated incidence of malformations. Any of the tested concentrations resulted in histopathological changes of liver, kidney, skin, or gill. After fourteen days of exposure there was short-term delay of development related to increased concentrations of pharmaceuticals in the mixture (2, 20, and 60 μg · L(-1)). Environmentally relevant concentrations (0.02; and 0.2 μg · L(-1)) used in this experiment did not result in toxic impairment of tench.
- MeSH
- chemické látky znečišťující vodu toxicita MeSH
- Cyprinidae růst a vývoj MeSH
- diklofenak toxicita MeSH
- karbamazepin toxicita MeSH
- testy toxicity MeSH
- vodní organismy účinky léků růst a vývoj MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- chemické látky znečišťující vodu MeSH
- diklofenak MeSH
- karbamazepin MeSH