Most cited article - PubMed ID 15374317
Comparison of the effects of aging in vivo and of oxygen free radicals in vitro on high-affinity choline uptake and hemicholinium-3 binding in the rat brain
Amyloid β peptides appear to play a role in physiological processes; however, they are also involved in the pathogenesis of Alzheimer disease. Their actions under normal conditions are probably mediated by soluble monomeric L-isoforms at low concentrations, perhaps via highly specific interactions. On the contrary, toxic effects of aggregated natural L-isoforms/synthetic D-isoforms on membranes are very similar, but synthetic reverse/random L: -isoforms without pronounced aggregation properties are not toxic. Our previous work reported interactions of non-aggregated/aggregated L-isoforms of amyloid β peptides 1-40/1-42 with racemic 24-hydroxycholesterol. In this study, stereospecificity in the interactions of natural 24(S)hydroxycholesterol (cerebrosterol) or synthetic 24(R)hydroxycholesterol with soluble fragment 1-40 was evaluated by means of an in vitro test based on increased vulnerability of the hemicholinium-3 sensitive high-affinity choline uptake system in rat hippocampal cholesterol-depleted synaptosomes to the actions of amyloid β; computational simulations were also performed. Our results suggest that: (1) 24(S)hydroxycholesterol interacts with L-peptide 1-40 but not with the reverse L-peptide 40-1, (2) 24(R)hydroxycholesterol does not interact with L-peptide 1-40 or reverse 40-1, and (3) both enantiomers can probably interact with D-peptide 1-40. Therefore, the binding of 24(S)hydroxycholesterol is not fully stereospecific and the interaction could not reflect a physiological mechanism. Data from the computational simulation indicate that the hydrophobic core of the amyloid β molecule interacts with the hydrophobic part of 24(S)hydroxycholesterol, but no hydrogen bonds with high stability were found. Using this procedure, globular amyloid β could retain 24(S)hydroxycholesterol and thus contribute to its pathological accumulation in the brains of patients with Alzheimer disease.
- MeSH
- Amyloid beta-Peptides metabolism MeSH
- Hippocampus metabolism MeSH
- Hydroxycholesterols metabolism MeSH
- Rats MeSH
- Peptide Fragments metabolism MeSH
- Rats, Wistar MeSH
- Protein Binding MeSH
- Animals MeSH
- Check Tag
- Rats MeSH
- Male MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- 24-hydroxycholesterol MeSH Browser
- amyloid beta-protein (1-40) MeSH Browser
- Amyloid beta-Peptides MeSH
- Hydroxycholesterols MeSH
- Peptide Fragments MeSH
Brains of Alzheimer disease patients in early stages of dementia contain an increased 24(S)-hydroxycholesterol (cerebrosterol)/cholesterol ratio when compared to controls. In this study, effects of amyloid beta peptides and of racemic 24-hydroxycholesterol were evaluated in vitro on undepleted or cholesterol-depleted hippocampal synaptosomes of young and old rats via a high-affinity choline transport and membrane anisotropy measurements. Depletion of membrane cholesterol decreased the transport of [3H]choline, increased the specific binding of [3H]hemicholinium-3 and decreased membrane anisotropy. However, less alterations were found in old when compared to young brains. 500 nM nonaggregated peptides were ineffective but aggregated fragment 1-42 evoked marked drops in the transport and anisotropy values on depleted synaptosomes. 50 microM 24-hydroxycholesterol inhibited choline transport on depleted synaptosomes but it did not influence membrane anisotropy. Peptides eliminated the actions of oxysterol on choline carriers in young but not in old rats. On the other hand, oxysterol eliminated the effects of peptides on membrane anisotropy. Our study suggests a possible role of membrane cholesterol in the regulation of choline carriers and supports data reporting a protective role of membrane cholesterol against toxic effects of amyloid beta peptides. Moreover, via Raman spectroscopy we demonstrate for the first time that peptides form a complex with 24-hydroxycholesterol.
- MeSH
- Amyloid beta-Peptides chemistry toxicity MeSH
- Anisotropy MeSH
- Cholinergic Agents pharmacology MeSH
- Diphenylhexatriene MeSH
- Membrane Fluidity drug effects MeSH
- Fluorescent Dyes MeSH
- Hemicholinium 3 pharmacology MeSH
- Hippocampus drug effects metabolism MeSH
- Hydroxycholesterols chemistry toxicity MeSH
- Data Interpretation, Statistical MeSH
- Rats MeSH
- Membrane Transport Proteins metabolism MeSH
- Membranes drug effects metabolism MeSH
- Rats, Wistar MeSH
- Neurotransmitter Transport Proteins metabolism MeSH
- Spectrum Analysis, Raman MeSH
- Aging physiology MeSH
- Synaptosomes drug effects metabolism MeSH
- In Vitro Techniques MeSH
- Animals MeSH
- Check Tag
- Rats MeSH
- Male MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- 24-hydroxycholesterol MeSH Browser
- Amyloid beta-Peptides MeSH
- choline transporter MeSH Browser
- Cholinergic Agents MeSH
- Diphenylhexatriene MeSH
- Fluorescent Dyes MeSH
- Hemicholinium 3 MeSH
- Hydroxycholesterols MeSH
- Membrane Transport Proteins MeSH
- Neurotransmitter Transport Proteins MeSH
Studies suggest age- and sex-dependent structural and functional patterns of human cerebral lateralization underlie hemisphere specialization and its alterations in schizophrenia. Recent works report sexual dimorphism of neurons in the hippocampal formation and specialization of hemispheres in rats. Our experiments indicate for the first time functional lateralization of the high-affinity choline uptake (HACU) system directly associated with a synthesis of acetylcholine in the hippocampus of Wistar rats. The markedly increased HACU activity was found in the left compared to the right hippocampus of adult male but not female animals. Lineweaver-Burk plot analysis revealed a statistically significant increase of Vmax in the left hippocampus of 14-day-old when compared to 7-day-old males. It appears that laterality of HACU occurs during late postnatal maturation, and its degree is markedly enhanced after puberty and attenuated during aging. Quinolinic acid (QUIN), an endogenous agonist of N-methyl-D-aspartate type glutamate receptors, was used in this study to evaluate the neurodevelopmental hypothesis of schizophrenia. It is known that elevated levels of QUIN accompany viral infections, increasing the risk of developing schizophrenia. Bilateral intracerebroventricular application of QUIN (250 nmoles/ventricle) to pups aged 12 days significantly impaired the cholinergic hippocampal system of adolescent male and female rats and reversed lateralization of male HACU. Morphological analysis indicated marked changes in brain lesion sizes (extensive 24 h and moderate 38 days after the operation). Asymmetry of lesions was observed in the majority of cases, but the left hemisphere was not generally more vulnerable to QUIN effects than the right side. Moreover, no lateral differences were found between lesioned hippocampi in the specific binding of [3H]hemicholinium-3 (10%-15% loss of binding sites when compared to sham-operated animals). In summary, our results indicate a symmetrical drop in the number of choline carriers of lesioned male rats but a asymmetrical decrease in the activity of remaing carriers, suggesting defects in processes of sexual brain differentiation, leading under normal conditions to the higher activity of carriers in the left hippocampus. The data demonstrate viral infection-mediated alterations in normal patterns of brain asymmetry and are discussed in relation to animal models of neurodevelopmental and neurodegenerative diseases.
- MeSH
- Functional Laterality * MeSH
- Hippocampus physiopathology MeSH
- Rats MeSH
- Disease Models, Animal * MeSH
- Neurodegenerative Diseases physiopathology MeSH
- Rats, Wistar MeSH
- Receptors, Cholinergic physiology MeSH
- Sex Factors MeSH
- Animals MeSH
- Check Tag
- Rats MeSH
- Male MeSH
- Female MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Receptors, Cholinergic MeSH
Effects of amyloid beta peptide 1-40 (Abeta) and of plant cysteine proteases bromelain and papain on the high-affinity uptake of choline (HACU) and the specific binding of [3H]hemicholinium-3 ([3H]HC-3) have been investigated on hippocampal synaptosomes from young adult male Wistar rats under basal and stimulated conditions (55 mM KCl). Depolarization increased significantly the HACU levels (the changes were predominantly in Vmax) and mildly the [3H]HC-3 binding (the changes especially in K(D)). Nonaggregated Abeta at low nM concentrations suppressed the depolarization effects but was ineffective under basal conditions during a short-term incubation. Higher microM concentrations decreased the HACU and binding under basal conditions in a time-dependent manner. The binding changes were firstly associated with alterations in K(D) and secondarily were accompanied also by a drop in Bmax. The results suggest that Abeta directly influences high-affinity carriers, inhibits their transport activity and enhances their sensitivity to proteoLytic cleavage. Stimulation increases the sensitivity of carriers to the interaction with Abeta.
- MeSH
- Amyloid beta-Peptides pharmacology MeSH
- Choline metabolism MeSH
- Hemicholinium 3 pharmacology MeSH
- Hippocampus drug effects metabolism MeSH
- Hydrolysis MeSH
- Rats MeSH
- Peptide Fragments pharmacology MeSH
- Rats, Wistar MeSH
- Carrier Proteins drug effects metabolism MeSH
- Animals MeSH
- Check Tag
- Rats MeSH
- Male MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- amyloid beta-protein (1-40) MeSH Browser
- Amyloid beta-Peptides MeSH
- Choline MeSH
- Hemicholinium 3 MeSH
- Peptide Fragments MeSH
- Carrier Proteins MeSH
The Na+-dependent high-affinity choline uptake (HACU) transport and the [3H]hemicholinium-3 ([3H]HC-3) specific binding were measured on hippocampal synaptosomes of young (3-6 months) and old (22 months) Wistar rats. In vitro effects of 100-300 microM arachidonic acid (AA) and of 5% ethanol were tested under basal as well as stimulated (55 mM KCl) conditions. The influence of AA (an irreversible decrease of HACU and a reversible increase of [3H]HC-3 binding) was more marked under stimulated rather than basal conditions in brain tissue of young rats. The increased K+-depolarization effect on HACU and the decreased influence of AA on [3H]HC-3 binding were estimated in brain tissue of old compared to young rats. Results suggest the involvement of different pools of the high-affinity choline carrier and marked changes due to aging in the regulation of the HACU transport.
- MeSH
- Biological Transport MeSH
- Choline metabolism MeSH
- Potassium pharmacology MeSH
- Ethanol pharmacology MeSH
- Hemicholinium 3 metabolism MeSH
- Hippocampus drug effects metabolism MeSH
- Rats MeSH
- Arachidonic Acid pharmacology MeSH
- Rats, Wistar MeSH
- Aging metabolism MeSH
- Animals MeSH
- Check Tag
- Rats MeSH
- Male MeSH
- Female MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Choline MeSH
- Potassium MeSH
- Ethanol MeSH
- Hemicholinium 3 MeSH
- Arachidonic Acid MeSH
A second messenger role for arachidonic acid (AA) in the regulation of the high-affinity choline uptake (HACU) was suggested. It was reported that micromolar concentrations of AA applied in vitro decreased the HACU values and increased the specific binding of [3H]hemicholinium-3 ([3H]HCh-3). It was published that L-glutamic acid (GA) applied in vivo produced a fall in the HACU values. In addition, GA liberates free AA. In this study, an ability of GA to influence in vitro the activity of presynaptic cholinergic nerve terminals via its effect on the release of AA is investigated in hippocampal synaptosomes of young Wistar rats. Millimolar concentrations of GA decrease both the high- and low-affinity choline uptake, the specific as well as nonspecific binding of [3H]HCh-3 and the activity of Na+, K(+)-ATPase. Kinetic analysis (Lineweaver-Burk and Scatchard plots) reveals a change in Vmax and Bmax, but not in KM and KD. It appears very likely that under normal conditions GA applied in vitro is not able to change markedly the choline transport via its effect on the release of AA. Results confirm the hypothesis about an indirect inhibitory role for glutamatergic receptors on cholinergic cells.
- MeSH
- Biological Transport drug effects MeSH
- Choline pharmacokinetics MeSH
- Hemicholinium 3 metabolism MeSH
- Hippocampus cytology drug effects metabolism MeSH
- Rats MeSH
- Arachidonic Acid metabolism pharmacology MeSH
- Glutamic Acid pharmacology MeSH
- Linear Models MeSH
- Neurons drug effects metabolism MeSH
- Rats, Wistar MeSH
- In Vitro Techniques MeSH
- Binding Sites MeSH
- Animals MeSH
- Check Tag
- Rats MeSH
- Male MeSH
- Female MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Choline MeSH
- Hemicholinium 3 MeSH
- Arachidonic Acid MeSH
- Glutamic Acid MeSH