Most cited article - PubMed ID 15686764
Contrasting lead speciation in forest and tilled soils heavily polluted by lead metallurgy
Two Poaceae species, Agrostis capillaris and Festuca rubra, were selected for their potential as phytostabilizing plants in multicontaminated soils. These species are resistant to contamination and maintain high concentrations of contaminants at the root level. Nanoscale zero-valent iron (nZVI) is an engineered nanomaterial with the ability to stabilize metal(loid)s in soils; its potential toxicological effects in the selected species were studied in a germination test using: (i) control variant without soil; (ii) soil contaminated with Pb and Zn; and (iii) contaminated soil amended with 1% nZVI, as well as in an hydroponic experiment with the addition of nZVI 0, 25, 50 and 100 mg L-1. nZVI had no negative effects on seed germination or seedling growth, but was associated with an increase in shoot growth and reduction of the elongation inhibition rate (root-dependent) of F. rubra seedlings. However, applications of nZVI in the hydroponic solution had no effects on F. rubra but A. capillaris developed longer roots and more biomass. Increasing nZVI concentrations in the growing solution increased Mg and Fe uptake and reduced the Fe translocation factor. Our results indicate that nZVI has few toxic effects on the studied species.
- Keywords
- Agrostis capillaris, Festuca rubra, nano zerovalent iron, plant stress, uptake,
- Publication type
- Journal Article MeSH
Surroundings of the Legnica Cu smelter (Poland) offer insight into the behavior of Pb and other metal(oid)s in heavily contaminated soils in a relatively simple site, where lithogenic and anthropogenic Pb contributions have uniform Pb isotope composition over the time of smelter activity. Distribution of metal(oid)s decreases asymptotically with depth and below 30 cm reaches concentrations typical or lower than those of upper continental crust. Usually, such distribution is interpreted as the decrease in anthropogenic Pb contribution with depth. However, calculations based on Pb isotopes indicate that anthropogenic Pb is probably distributed both as Pb-rich particles of slags and fly ashes and Pb-poor soil solutions. Generally, anthropogenic Pb constitutes up to 100 % of Pb in the uppermost 10 cm of the soils and comes often from mechanical mixing with slag and fly ash particles as well as their weathering products. On the other hand, lower soil horizon contains anthropogenic Pb in various forms, and at depths below 30 cm, most of anthropogenic Pb comes from soil solutions and can constitute from 1 to 65 % of the Pb budget. This is consistent with secondary electron microscope (SEM) analyses of heavy mineral particles showing that, in upper horizons, Pb, Cu, and Zn are contained in various particles emitted from the smelter, which show different stages of weathering. Currently, large portion of these metals may reside in the secondary Fe-hydro-oxides. On the other hand, in deeper soil horizons, anthropogenic Pb is probably dominated by Pb coming from leaching of slag or fly ash particles. Overall, metal(oid) mobility is a dynamic process and is controlled by the soil type (cultivated versus forest) and the composition and the structure of the metal-rich particles emitted from the smelter. High proportions of anthropogenic Pb at depths below 30 cm in some soil profiles indicate that Pb (and probably other metal(oid)s) can be transported down the soil profile and the present concentration of anthropogenic Pb depends on the availability of binding sites.
- Keywords
- Anthropogenic Pb, Legnica Cu smelter, Metal(oid) mobility, Slags,
- MeSH
- Mining * MeSH
- Isotopes analysis MeSH
- Soil Pollutants analysis MeSH
- Copper analysis MeSH
- Minerals analysis MeSH
- Environmental Monitoring methods MeSH
- Lead analysis MeSH
- Soil chemistry MeSH
- Metals, Heavy analysis MeSH
- Publication type
- Journal Article MeSH
- Geographicals
- Poland MeSH
- Names of Substances
- Isotopes MeSH
- Soil Pollutants MeSH
- Copper MeSH
- Minerals MeSH
- Lead MeSH
- Soil MeSH
- Metals, Heavy MeSH
The release of hazardous elements from the wastes of high-temperature processes represents a risk to the environment. We focused on the alteration of fly ash (FA) from glassworks collected from an electrostatic filter. FA contains elevated concentrations of Zn and Ba, among other elements. Overtime, small amounts of FA have been emitted from the factory and settled into the surrounding environment (soil). In order to assess the possible risks to the environment, samples of FA were placed in small nylon bags and deposited in 11 different soil horizons (containing diverse vegetation cover such as spruce and beech and also unforested areas). Samples of the FA in bags were exposed in the soils for 1 year. Then, the bags were collected, and the exposed soils in the direct vicinity of the FA bags were sampled. The total concentrations of Zn and Ba in the FA, as well as in the soil samples (original and exposed), were determined by ICP MS. The "mobile fraction" was determined as the exchangeable (acid extractable) fraction of the modified BCR sequential extraction procedure (SEP). The SEP results indicate that Zn and Ba may pose a potential environmental risk. Their concentrations in the first, most mobile, and bioavailable fraction increased in all the exposed soils. The most significant increases were observed in the upper soil horizons (litter and A horizon). The risk to the environment was evaluated on the basis of the Risk Assessment Code.
- MeSH
- Barium chemistry MeSH
- Chemical Fractionation MeSH
- Soil Pollutants analysis MeSH
- Air Pollutants analysis MeSH
- Environmental Monitoring * MeSH
- Soil chemistry MeSH
- Zinc chemistry MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Barium MeSH
- Soil Pollutants MeSH
- Air Pollutants MeSH
- Soil MeSH
- Zinc MeSH
The soils adjacent to an area of historical mining, ore processing and smelting activities reflects the historical background and a mixing of recent contamination sources. The main anthropogenic sources of metals can be connected with historical and recent mine wastes, direct atmospheric deposition from mining and smelting processes and dust particles originating from open tailings ponds. Contaminated agriculture and forest soil samples with mining and smelting related pollutants were collected at different distances from the source of emission in the Pb-Zn-Ag mining area near Olkusz, Upper Silesia to (a) compare the chemical speciation of metals in agriculture and forest soils situated at the same distance from the point source of pollution (paired sampling design), (b) to evaluate the relationship between the distance from the polluter and the retention of the metals in the soil, (c) to describe mineralogy transformation of anthropogenic soil particles in the soils, and (d) to assess the effect of deposited fly ash vs. dumped mining/smelting waste on the mobility and bioavailability of metals in the soil. Forest soils are much more affected with smelting processes than agriculture soils. However, agriculture soils suffer from the downward metal migration more than the forest soils. The maximum concentrations of Pb, Zn, and Cd were detected in a forest soil profile near the smelter and reached about 25 g kg(- 1), 20 g kg(- 1) and 200 mg kg(- 1) for Pb, Zn and Cd, respectively. The metal pollutants from smelting processes are less stable under slightly alkaline soil pH then acidic due to the metal carbonates precipitation. Metal mobility ranges in the studied forest soils are as follows: Pb > Zn ≈ Cd for relatively circum-neutral soil pH (near the smelter), Cd > Zn > Pb for acidic soils (further from the smelter). Under relatively comparable pH conditions, the main soil properties influencing metal migration are total organic carbon and cation exchange capacity. The mobilization of Pb, Zn and Cd in soils depends on the persistence of the metal-containing particles in the atmosphere; the longer the time, the more abundant the stable forms. The dumped mining/smelting waste is less risk of easily mobilizable metal forms, however, downward metal migration especially due to the periodical leaching of the waste was observed.
- MeSH
- Chemical Fractionation MeSH
- Mining * MeSH
- Soil Pollutants analysis MeSH
- Environmental Monitoring methods MeSH
- Soil chemistry MeSH
- Metals, Heavy analysis MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Geographicals
- Poland MeSH
- Names of Substances
- Soil Pollutants MeSH
- Soil MeSH
- Metals, Heavy MeSH
Rímov water reservoir on the river Malse is the main source of drinking water for the town of Ceské Budejovice and for the majority of inhabitants in the South Bohemian region, Czech Republic. Changes in cadmium and lead contents in bottom sediments before and after an extensive flood on the river Malse in August, 2002 were therefore determined. A five-step sequential extraction procedure was used in order to obtain more detailed information about the influence of the flood on heavy metal retention. In order to determine the mobility of lead and cadmium, the mobility factor (MF) for these heavy metals was calculated. The mobility factor of cadmium showed a significant decrease in the upper parts of the sediment profiles after the flood (e.g., from 59.4% to 49.1%) caused by a release of cadmium especially from the exchangeable fraction. There were no significant changes in the lead mobility factor after the flood, but a decrease of lead concentration in the exchangeable fraction was observed. Presented results show that the flood led to a leaching of the heavy metals present in bottom sediments into the environment.
- MeSH
- Chemical Fractionation MeSH
- Water Pollutants, Chemical analysis chemistry MeSH
- Geologic Sediments analysis chemistry MeSH
- Cadmium analysis chemistry MeSH
- Disasters * MeSH
- Lead analysis chemistry MeSH
- Rivers MeSH
- Water Supply MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Geographicals
- Czech Republic MeSH
- Names of Substances
- Water Pollutants, Chemical MeSH
- Cadmium MeSH
- Lead MeSH