Nejvíce citovaný článek - PubMed ID 15691655
Protein import and genome replication are essential processes for mitochondrial biogenesis and propagation. The J-domain proteins Pam16 and Pam18 regulate the presequence translocase of the mitochondrial inner membrane. In the protozoan Trypanosoma brucei, their counterparts are TbPam16 and TbPam18, which are essential for the procyclic form (PCF) of the parasite, though not involved in mitochondrial protein import. Here, we show that during evolution, the 2 proteins have been repurposed to regulate the replication of maxicircles within the intricate kDNA network, the most complex mitochondrial genome known. TbPam18 and TbPam16 have inactive J-domains suggesting a function independent of heat shock proteins. However, their single transmembrane domain is essential for function. Pulldown of TbPam16 identifies a putative client protein, termed MaRF11, the depletion of which causes the selective loss of maxicircles, akin to the effects observed for TbPam18 and TbPam16. Moreover, depletion of the mitochondrial proteasome results in increased levels of MaRF11. Thus, we have discovered a protein complex comprising TbPam18, TbPam16, and MaRF11, that controls maxicircle replication. We propose a working model in which the matrix protein MaRF11 functions downstream of the 2 integral inner membrane proteins TbPam18 and TbPam16. Moreover, we suggest that the levels of MaRF11 are controlled by the mitochondrial proteasome.
- MeSH
- mitochondriální DNA * genetika metabolismus MeSH
- mitochondriální proteiny metabolismus genetika MeSH
- mitochondrie metabolismus genetika MeSH
- molekulární evoluce MeSH
- protozoální proteiny * metabolismus genetika MeSH
- replikace DNA * MeSH
- Trypanosoma brucei brucei * metabolismus genetika MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- mitochondriální DNA * MeSH
- mitochondriální proteiny MeSH
- protozoální proteiny * MeSH
The canonical stop codons of the nuclear genome of the trypanosomatid Blastocrithidia nonstop are recoded. Here, we investigated the effect of this recoding on the mitochondrial genome and gene expression. Trypanosomatids possess a single mitochondrion and protein-coding transcripts of this genome require RNA editing in order to generate open reading frames of many transcripts encoded as 'cryptogenes'. Small RNAs that can number in the hundreds direct editing and produce a mitochondrial transcriptome of unusual complexity. We find B. nonstop to have a typical trypanosomatid mitochondrial genetic code, which presumably requires the mitochondrion to disable utilization of the two nucleus-encoded suppressor tRNAs, which appear to be imported into the organelle. Alterations of the protein factors responsible for mRNA editing were also documented, but they have likely originated from sources other than B. nonstop nuclear genome recoding. The population of guide RNAs directing editing is minimal, yet virtually all genes for the plethora of known editing factors are still present. Most intriguingly, despite lacking complex I cryptogene guide RNAs, these cryptogene transcripts are stochastically edited to high levels.
- MeSH
- buněčné jádro * genetika metabolismus MeSH
- editace RNA * MeSH
- genetický kód MeSH
- genom mitochondriální * MeSH
- guide RNA, Kinetoplastida genetika metabolismus MeSH
- kodon genetika MeSH
- messenger RNA genetika metabolismus MeSH
- mitochondrie genetika metabolismus MeSH
- otevřené čtecí rámce genetika MeSH
- protozoální proteiny genetika metabolismus MeSH
- RNA transferová * genetika metabolismus MeSH
- terminační kodon genetika MeSH
- Trypanosomatina genetika metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- guide RNA, Kinetoplastida MeSH
- kodon MeSH
- messenger RNA MeSH
- protozoální proteiny MeSH
- RNA transferová * MeSH
- terminační kodon MeSH
Trypanosoma brucei spp. cause African human and animal trypanosomiasis, a burden on health and economy in Africa. These hemoflagellates are distinguished by a kinetoplast nucleoid containing mitochondrial DNAs of two kinds: maxicircles encoding ribosomal RNAs (rRNAs) and proteins and minicircles bearing guide RNAs (gRNAs) for mRNA editing. All RNAs are produced by a phage-type RNA polymerase as 3' extended precursors, which undergo exonucleolytic trimming. Most pre-mRNAs proceed through 3' adenylation, uridine insertion/deletion editing, and 3' A/U-tailing. The rRNAs and gRNAs are 3' uridylated. Historically, RNA editing has attracted major research effort, and recently essential pre- and postediting processing events have been discovered. Here, we classify the key players that transform primary transcripts into mature molecules and regulate their function and turnover.
- Klíčová slova
- RNA decay, RNA editing, Trypanosoma, kinetoplast, mitochondria, polyadenylation,
- MeSH
- editace RNA fyziologie MeSH
- RNA mitochondriální genetika metabolismus MeSH
- RNA protozoální genetika metabolismus MeSH
- Trypanosoma brucei brucei genetika metabolismus MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Research Support, N.I.H., Extramural MeSH
- Názvy látek
- RNA mitochondriální MeSH
- RNA protozoální MeSH
Protein structure determines biological function. Accurately conceptualizing 3D protein/ligand structures is thus vital to scientific research and education. Virtual reality (VR) enables protein visualization in stereoscopic 3D, but many VR molecular-visualization programs are expensive and challenging to use; work only on specific VR headsets; rely on complicated model-preparation software; and/or require the user to install separate programs or plugins. Here we introduce ProteinVR, a web-based application that works on various VR setups and operating systems. ProteinVR displays molecular structures within 3D environments that give useful biological context and allow users to situate themselves in 3D space. Our web-based implementation is ideal for hypothesis generation and education in research and large-classroom settings. We release ProteinVR under the open-source BSD-3-Clause license. A copy of the program is available free of charge from http://durrantlab.com/protein-vr/, and a working version can be accessed at http://durrantlab.com/pvr/.
- MeSH
- internet * MeSH
- konformace proteinů MeSH
- proteiny * chemie ultrastruktura MeSH
- virtuální realita * MeSH
- výpočetní biologie metody MeSH
- zobrazování trojrozměrné metody MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Názvy látek
- proteiny * MeSH
UNLABELLED: A dozen mRNAs are edited by multiple insertions and/or deletions of uridine residues in the mitochondrion of Trypanosoma brucei Several protein complexes have been implicated in performing this type of RNA editing, including the mitochondrial RNA-binding complex 1 (MRB1). Two paralogous novel RNA-binding proteins, MRB8170 and MRB4160, are loosely associated with the core MRB1 complex. Their roles in RNA editing and effects on target mRNAs are so far not well understood. In this study, individual-nucleotide-resolution UV-cross-linking and affinity purification (iCLAP) revealed a preferential binding of both proteins to mitochondrial mRNAs, which was positively correlated with their extent of editing. Integrating additional in vivo and in vitro data, we propose that binding of MRB8170 and/or MRB4160 onto pre-mRNA marks it for the initiation of editing and that initial binding of both proteins may facilitate the recruitment of other components of the RNA editing/processing machinery to ensure efficient editing. Surprisingly, MRB8170 also binds never-edited mRNAs, suggesting that at least this paralog has an additional role outside RNA editing to shape the mitochondrial transcriptome. IMPORTANCE: Trypanosoma brucei mitochondrial mRNAs undergo maturation by RNA editing, a unique process involving decrypting open reading frames by the precise deletion and/or insertion of uridine (U) residues at specific positions on an mRNA. This process is catalyzed by multiprotein complexes, such as the RNA editing core complex, which provides the enzymatic activities needed for U insertion/deletion at a single editing site. Less well understood is how RNA editing occurs throughout an mRNA bearing multiple sites. To address this question, we mapped at single-nucleotide resolution the RNA interactions of two unique RNA-binding proteins (RBPs). These RBPs are part of the mitochondrial RNA-binding complex 1, hypothesized to mediate multiple rounds of RNA editing. Both RBPs were shown to mark mRNAs for the process in correlation with the number of editing sites on the transcript. Surprisingly, one also binds mRNAs that bypass RNA editing, indicating that it may have an additional role outside RNA editing.
- MeSH
- editace RNA * MeSH
- mitochondrie metabolismus MeSH
- prekurzory RNA metabolismus MeSH
- protozoální proteiny metabolismus MeSH
- Trypanosoma brucei brucei metabolismus MeSH
- vazba proteinů MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- prekurzory RNA MeSH
- protozoální proteiny MeSH
RNA editing, which adds sequence information to RNAs post-transcriptionally, is a widespread phenomenon throughout eukaryotes. The most complex form of this process is the uridine (U) insertion/deletion editing that occurs in the mitochondria of kinetoplastid protists. RNA editing in these flagellates is specified by trans-acting guide RNAs and entails the insertion of hundreds and deletion of dozens of U residues from mitochondrial RNAs to produce mature, translatable mRNAs. An emerging model indicates that the machinery required for trypanosome RNA editing is much more complicated than previously appreciated. A family of RNA editing core complexes (RECCs), which contain the required enzymes and several structural proteins, catalyze cycles of U insertion and deletion. A second, dynamic multiprotein complex, the Mitochondrial RNA Binding 1 (MRB1) complex, has recently come to light as another essential component of the trypanosome RNA editing machinery. MRB1 likely serves as the platform for kinetoplastid RNA editing, and plays critical roles in RNA utilization and editing processivity. MRB1 also appears to act as a hub for coordination of RNA editing with additional mitochondrial RNA processing events. This review highlights the current knowledge regarding the complex molecular machinery involved in trypanosome RNA editing. WIREs RNA 2016, 7:33-51. doi: 10.1002/wrna.1313 For further resources related to this article, please visit the WIREs website.
- MeSH
- editace RNA * MeSH
- protozoální proteiny genetika MeSH
- RNA protozoální genetika MeSH
- Trypanosoma brucei brucei genetika MeSH
- uridin genetika MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Research Support, N.I.H., Extramural MeSH
- Názvy látek
- protozoální proteiny MeSH
- RNA protozoální MeSH
- uridin MeSH
BACKGROUND: The haemoflagellate Trypanosoma lewisi is a kinetoplastid parasite which, as it has been recently reported to cause human disease, deserves increased attention. Characteristic features of all kinetoplastid flagellates are a uniquely structured mitochondrial DNA or kinetoplast, comprised of a network of catenated DNA circles, and RNA editing of mitochondrial transcripts. The aim of this study was to describe the kinetoplast DNA of T. lewisi. METHODS/RESULTS: In this study, purified kinetoplast DNA from T. lewisi was sequenced using high-throughput sequencing in combination with sequencing of PCR amplicons. This allowed the assembly of the T. lewisi kinetoplast maxicircle DNA, which is a homologue of the mitochondrial genome in other eukaryotes. The assembly of 23,745 bp comprises the non-coding and coding regions. Comparative analysis of the maxicircle sequence of T. lewisi with Trypanosoma cruzi, Trypanosoma rangeli, Trypanosoma brucei and Leishmania tarentolae revealed that it shares 78%, 77%, 74% and 66% sequence identity with these parasites, respectively. The high GC content in at least 9 maxicircle genes of T. lewisi (ATPase6; NADH dehydrogenase subunits ND3, ND7, ND8 and ND9; G-rich regions GR3 and GR4; cytochrome oxidase subunit COIII and ribosomal protein RPS12) implies that their products may be extensively edited. A detailed analysis of the non-coding region revealed that it contains numerous repeat motifs and palindromes. CONCLUSIONS: We have sequenced and comprehensively annotated the kinetoplast maxicircle of T. lewisi. Our analysis reveals that T. lewisi is closely related to T. cruzi and T. brucei, and may share similar RNA editing patterns with them rather than with L. tarentolae. These findings provide novel insight into the biological features of this emerging human pathogen.
- MeSH
- anotace sekvence MeSH
- editace RNA MeSH
- fylogeneze MeSH
- kinetoplastová DNA chemie genetika MeSH
- molekulární sekvence - údaje MeSH
- polymerázová řetězová reakce MeSH
- pořadí genů MeSH
- protozoální DNA chemie genetika MeSH
- sekvenční analýza DNA MeSH
- sekvenční homologie nukleových kyselin MeSH
- shluková analýza MeSH
- Trypanosoma lewisi genetika MeSH
- vysoce účinné nukleotidové sekvenování MeSH
- zastoupení bazí MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- kinetoplastová DNA MeSH
- protozoální DNA MeSH
In this study, we describe the mitochondrial genome of the excavate flagellate Euglena gracilis. Its gene complement is reduced as compared with the well-studied sister groups Diplonemea and Kinetoplastea. We have identified seven protein-coding genes: Three subunits of respiratory complex I (nad1, nad4, and nad5), one subunit of complex III (cob), and three subunits of complex IV (cox1, cox2, and a highly divergent cox3). Moreover, fragments of ribosomal RNA genes have also been identified. Genes encoding subunits of complex V, ribosomal proteins and tRNAs were missing, and are likely located in the nuclear genome. Although mitochondrial genomes of diplonemids and kinetoplastids possess the most complex RNA processing machineries known, including trans-splicing and editing of the uridine insertion/deletion type, respectively, our transcriptomic data suggest their total absence in E. gracilis. This finding supports a scenario in which the complex mitochondrial processing machineries of both sister groups evolved relatively late in evolution from a streamlined genome and transcriptome of their common predecessor.
- Klíčová slova
- Euglena gracilis, RNA editing, mitochondrial genome, transcription,
- MeSH
- editace RNA MeSH
- elektronový transportní řetězec genetika MeSH
- Euglena gracilis genetika MeSH
- genom mitochondriální * MeSH
- molekulární evoluce * MeSH
- RNA ribozomální genetika MeSH
- sestřih RNA MeSH
- transkriptom MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- elektronový transportní řetězec MeSH
- RNA ribozomální MeSH
The ADAR proteins deaminate adenosine to inosine in double-stranded RNA which is one of the most abundant modifications present in mammalian RNA. Inosine can have a profound effect on the RNAs that are edited, not only changing the base-pairing properties, but can also result in recoding, as inosine behaves as if it were guanosine. In mammals there are three ADAR proteins and two ADAR-related proteins (ADAD) expressed. All have a very similar modular structure; however, both their expression and biological function differ significantly. Only two of the ADAR proteins have enzymatic activity. However, both ADAR and ADAD proteins possess the ability to bind double-strand RNA. Mutations in ADARs have been associated with many diseases ranging from cancer, innate immunity to neurological disorders. Here, we will discuss in detail the domain structure of mammalian ADARs, the effects of RNA editing, and the role of ADARs in human diseases.
- Klíčová slova
- ADAR, Alu elements, RNA editing, cancer, deaminase domain, dsRBDs,
- MeSH
- adenosindeaminasa metabolismus MeSH
- dvouvláknová RNA metabolismus MeSH
- editace RNA genetika MeSH
- lidé MeSH
- proteiny vázající RNA metabolismus MeSH
- savci MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Názvy látek
- adenosindeaminasa MeSH
- dvouvláknová RNA MeSH
- proteiny vázající RNA MeSH
Two key biological features distinguish Trypanosoma evansi from the T. brucei group: independence from the tsetse fly as obligatory vector, and independence from the need for functional mitochondrial DNA (kinetoplast or kDNA). In an effort to better understand the molecular causes and consequences of these differences, we sequenced the genome of an akinetoplastic T. evansi strain from China and compared it to the T. b. brucei reference strain. The annotated T. evansi genome shows extensive similarity to the reference, with 94.9% of the predicted T. b. brucei coding sequences (CDS) having an ortholog in T. evansi, and 94.6% of the non-repetitive orthologs having a nucleotide identity of 95% or greater. Interestingly, several procyclin-associated genes (PAGs) were disrupted or not found in this T. evansi strain, suggesting a selective loss of function in the absence of the insect life-cycle stage. Surprisingly, orthologous sequences were found in T. evansi for all 978 nuclear CDS predicted to represent the mitochondrial proteome in T. brucei, although a small number of these may have lost functionality. Consistent with previous results, the F1FO-ATP synthase γ subunit was found to have an A281 deletion, which is involved in generation of a mitochondrial membrane potential in the absence of kDNA. Candidates for CDS that are absent from the reference genome were identified in supplementary de novo assemblies of T. evansi reads. Phylogenetic analyses show that the sequenced strain belongs to a dominant group of clonal T. evansi strains with worldwide distribution that also includes isolates classified as T. equiperdum. At least three other types of T. evansi or T. equiperdum have emerged independently. Overall, the elucidation of the T. evansi genome sequence reveals extensive similarity of T. brucei and supports the contention that T. evansi should be classified as a subspecies of T. brucei.
- MeSH
- analýza hlavních komponent MeSH
- fylogeneze * MeSH
- genom protozoální * MeSH
- jednonukleotidový polymorfismus MeSH
- mikrosatelitní repetice MeSH
- protozoální proteiny genetika metabolismus MeSH
- regulace genové exprese MeSH
- Trypanosoma klasifikace genetika MeSH
- trypanosomové variantní povrchové glykoproteiny genetika metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Názvy látek
- protozoální proteiny MeSH
- trypanosomové variantní povrchové glykoproteiny MeSH